BERTINI THEOREMS FOR IDEALS LINKED TO A GIVEN IDEAL

被引:1
|
作者
VIJAYLAXMI, T [1 ]
机构
[1] TATA INST FUNDAMENTAL RES,SCH MATH,BOMBAY 400005,INDIA
关键词
LINKAGE; LOCAL BERTINI THEOREM; NASH BLOW UP; R-FOLD BASIC ELEMENTS;
D O I
10.1007/BF02863411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a generalization of Flenner's local Bertini theorem for complete intersections. More generally, we study properties of the 'general' ideal linked to a given ideal. Our results imply the following. Let R be a regular local Nagata ring containing an infinite perfect field k, and I subset-of R is an equidimensional radical ideal of height r, such that R/I is Cohen-Macaulay and a local complete intersection in codimension 1. Then for the 'general' linked ideal J(alpha), R/J(alpha) is normal and Cohen-Macaulay. The proofs involve a combination of the method of basic elements, applied to suitable blow ups.
引用
收藏
页码:305 / 331
页数:27
相关论文
共 50 条