EXACT INVERSE SCATTERING SOLUTION OF A NONLINEAR EVOLUTION EQUATION IN A NONUNIFORM MEDIUM

被引:76
|
作者
GUPTA, MR
机构
关键词
D O I
10.1016/0375-9601(79)90833-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:420 / 422
页数:3
相关论文
共 50 条
  • [31] An Algebraic Solution Method for Nonlinear Inverse Scattering
    Bevacqua, Martina T.
    Crocco, Lorenzo
    Di Donato, Loreto
    Isernia, Tommaso
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (02) : 601 - 610
  • [32] INVERSE SCATTERING TRANSFORM FOR NONLINEAR EVOLUTION EQUATIONS
    ABLOWITZ, MJ
    KAUP, DJ
    NEWELL, AC
    SEGUR, H
    [J]. SIAM REVIEW, 1974, 16 (04) : 577 - 577
  • [33] Nonlinear Evolution Equation for Propagation of Waves in an Artery with an Aneurysm: An Exact Solution Obtained by the Modified Method of Simplest Equation
    Nikolova, Elena, V
    Jordanov, Ivan P.
    Dimitrova, Zlatinka L.
    Vitanov, Nikolay K.
    [J]. ADVANCED COMPUTING IN INDUSTRIAL MATHEMATICS, 2018, 728 : 131 - 144
  • [34] Modeling of the exact solution of the inverse scattering problem by functional methods
    Burov, V. A.
    Vecherin, S. N.
    Morozov, S. A.
    Rumyantseva, O. D.
    [J]. ACOUSTICAL PHYSICS, 2010, 56 (04) : 541 - 559
  • [35] Modeling of the exact solution of the inverse scattering problem by functional methods
    V. A. Burov
    S. N. Vecherin
    S. A. Morozov
    O. D. Rumyantseva
    [J]. Acoustical Physics, 2010, 56 : 541 - 559
  • [36] INVERSE SCATTERING FOR OPTICAL COUPLERS - EXACT SOLUTION OF MARCHENKO EQUATIONS
    BAVA, GP
    GHIONE, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) : 1900 - 1904
  • [37] AN EXACT SOLUTION TO THE SPATIAL EVOLUTION OF A CARRIER AND A PAIR OF SIDE-BANDS IN A CUBICALLY NONLINEAR MEDIUM
    MAGHRAOUI, M
    BANERJEE, PP
    [J]. OPTICS COMMUNICATIONS, 1991, 83 (5-6) : 358 - 366
  • [38] Inverse scattering transformation for generalized nonlinear Schrodinger equation
    Zhang, Xiaoen
    Chen, Yong
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 98 : 306 - 313
  • [39] Inverse scattering problems of the nonlinear LIDAR-equation
    [J]. Z Angew Math Mech ZAMM, Suppl 3 (S867):
  • [40] Inverse scattering for the nonlinear Schrodinger equation with the Yukawa potential
    Sasaki, Hironobu
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (07) : 1175 - 1197