YANG-MILLS BAR CONNECTIONS OVER COMPACT KAHLER MANIFOLDS

被引:0
|
作者
Van Le, Hong [1 ]
机构
[1] Math Inst ASCR, Zitna 25, CZ-11567 Prague 1, Czech Republic
来源
ARCHIVUM MATHEMATICUM | 2010年 / 46卷 / 01期
关键词
Kahler manifold; complex vector bundle; holomorphic connection; Yang-Mills bar gradient flow;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we introduce a Yang-Mills bar equation on complex vector bundles E provided with a Hermitian metric over compact Hermitian manifolds. According to the Koszul-Malgrange criterion any holomorphic structure on E can be seen as a solution to this equation. We show the existence of a non-trivial solution to this equation over compact Kahler manifolds as well as a short time existence of a related negative Yang-Mills bar gradient flow. We also show a rigidity of holomorphic connections among a class of Yang-Mills bar connections over compact Kaahler manifolds of positive Ricci curvature.
引用
收藏
页码:47 / 69
页数:23
相关论文
共 50 条