MODEL OF FUZZY REASONING THROUGH MULTI-VALUED LOGIC AND SET-THEORY

被引:32
|
作者
BALDWIN, JF
PILSWORTH, BW
机构
来源
关键词
D O I
10.1016/S0020-7373(79)80030-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
下载
收藏
页码:351 / 380
页数:30
相关论文
共 50 条
  • [21] SET-THEORY AND FREE LOGIC
    BENCIVENGA, E
    JOURNAL OF PHILOSOPHICAL LOGIC, 1976, 5 (01) : 1 - 15
  • [22] FREEWAY RAMP CONTROL USING FUZZY SET-THEORY FOR INEXACT REASONING
    CHEN, LL
    MAY, AD
    AUSLANDER, DM
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 1990, 24 (01) : 15 - 25
  • [23] Research and realization of complement set arithmetic for multi-valued logic function
    Qiu, Jianlin
    Wang, Bo
    DCABES 2006 Proceedings, Vols 1 and 2, 2006, : 65 - 68
  • [24] APPLICATIONS OF FUZZY SET-THEORY
    MAIERS, J
    SHERIF, YS
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (01): : 175 - 189
  • [25] FUZZY SET-THEORY IN THE USSR
    POSPELOV, HS
    FUZZY SETS AND SYSTEMS, 1987, 22 (1-2) : 1 - 2
  • [26] FALSITY ACCUMULATION THEORY IN MULTI-VALUED GODEL LOGIC SYSTEM
    Hui, Xiaojing
    QUANTITATIVE LOGIC AND SOFT COMPUTING, 2012, 5 : 60 - 65
  • [27] Multi-Valued Interval Neutrosophic Soft Set: Formulation and Theory
    Kamal N.L.A.M.
    Abdullah L.
    Abdullah I.
    Alkhazaleh S.
    Karaaslan F.
    Neutrosophic Sets and Systems, 2019, 30 : 149 - 170
  • [28] FUZZY SET-THEORY AND TOPOS THEORY
    BARR, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1986, 29 (04): : 501 - 508
  • [29] Multi-Valued Interval Neutrosophic Soft Set: Formulation and Theory
    Kamal, Nor Liyana Amalini Mohd
    Abdullah, Lazim
    Abdullah, Ilyani
    Alkhazaleh, Shawkat
    Karaaslan, Faruk
    NEUTROSOPHIC SETS AND SYSTEMS, 2019, 30 : 149 - 170
  • [30] Multi-valued and Fuzzy Logic Realization using TaOx Memristive Devices
    Debjyoti Bhattacharjee
    Wonjoo Kim
    Anupam Chattopadhyay
    Rainer Waser
    Vikas Rana
    Scientific Reports, 8