MODEL OF FUZZY REASONING THROUGH MULTI-VALUED LOGIC AND SET-THEORY

被引:32
|
作者
BALDWIN, JF
PILSWORTH, BW
机构
来源
关键词
D O I
10.1016/S0020-7373(79)80030-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:351 / 380
页数:30
相关论文
共 50 条
  • [1] SEMISIMPLE ALGEBRAS OF INFINITE VALUED LOGIC AND BOLD FUZZY SET-THEORY
    BELLUCE, LP
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (06): : 1356 - 1379
  • [2] LUKASIEWICZ LOGIC AND FUZZY SET-THEORY
    GILES, R
    INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1976, 8 (03): : 313 - 327
  • [3] FUZZY-LOGIC AND FUZZY SET-THEORY
    TAKEUTI, G
    TITANI, S
    ARCHIVE FOR MATHEMATICAL LOGIC, 1992, 32 (01) : 1 - 32
  • [5] A minimum adequate set of multi-valued logic
    Daizhan Cheng
    Jun-e Feng
    Jianli Zhao
    Shihua Fu
    Control Theory and Technology, 2021, 19 : 425 - 429
  • [6] A minimum adequate set of multi-valued logic
    Cheng, Daizhan
    Feng, Jun-e
    Zhao, Jianli
    Fu, Shihua
    CONTROL THEORY AND TECHNOLOGY, 2021, 19 (04) : 425 - 429
  • [8] Symbolic Approximate Reasoning with Fuzzy and Multi-valued Knowledge
    Moussa, Soumaya
    Kacem, Saoussen Bel Hadj
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS, 2017, 112 : 800 - 810
  • [9] INTUITIONISTIC FUZZY-LOGIC AND INTUITIONISTIC FUZZY SET-THEORY
    TAKEUTI, G
    TITANI, S
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (03) : 851 - 866
  • [10] 3-VALUED MODEL FOR SET-THEORY
    ROSE, A
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1978, 24 (05): : 437 - 440