DIFFRACTION TOMOGRAPHY AND THE STOCHASTIC INVERSE SCATTERING PROBLEM

被引:17
|
作者
ROUSEFF, D [1 ]
PORTER, RP [1 ]
机构
[1] UNIV WASHINGTON, DEPT ELECT ENGN, SEATTLE, WA 98195 USA
来源
关键词
D O I
10.1121/1.400994
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Fourier diffraction theorem is the basis of diffraction tomography. The theorem states that the field scattered by a semitransparent object maps onto arcs in the Fourier space of the object. In this paper, the stochastic analog is derived to the theorem for a general anisotropic, statistically homogeneous random continuum. By acoustically probing the random medium from various angles, the second-order statistics of the medium can be recovered from the second-order statistics of the perturbed field. The robust nature of the result is confirmed by numerical experiments using finite arrays and autocorrelation estimation theory.
引用
收藏
页码:1599 / 1605
页数:7
相关论文
共 50 条
  • [21] Multiple scattering and diffraction tomography
    Leeman, S
    Betts, M
    Ferrari, L
    ACOUSTICAL IMAGING, VOL 22, 1996, 22 : 75 - 80
  • [22] On the inverse stochastic reconstruction problem
    M. I. Tleubergenov
    Differential Equations, 2014, 50 : 274 - 278
  • [23] On the inverse stochastic reconstruction problem
    Tleubergenov, M. I.
    DIFFERENTIAL EQUATIONS, 2014, 50 (02) : 274 - 278
  • [24] INVERSE PROBLEM IN STOCHASTIC PROCESSES
    FRYBA, L
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1968, 48 (08): : T10 - &
  • [25] The inverse problem of emission tomography
    Gourion, D
    Noll, D
    INVERSE PROBLEMS, 2002, 18 (05) : 1435 - 1460
  • [26] Abel's inverse problem and inverse scattering
    Palamodov, VP
    LEGACY OF NIELS HENRIK ABEL, 2004, : 597 - 604
  • [27] The inverse scattering problem for cavities
    Qin, Hai-Hua
    Colton, David
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (06) : 699 - 708
  • [29] INVERSE PROBLEM OF SCATTERING THEORY
    SEATON, MJ
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1965, 85 (544P): : 390 - &
  • [30] INVERSE PROBLEM IN POTENTIAL SCATTERING
    MAGYARI, E
    STUDII SI CERCETARI DE FIZICA, 1970, 22 (08): : 841 - +