LOCAL INSTABILITY OF ORBITS IN POLYGONAL AND POLYHEDRAL BILLIARDS

被引:38
|
作者
GALPERIN, G
KRUGER, T
TROUBETZKOY, S
机构
[1] Forschungszentrum BiBoS, Universität Bielefeld, Bielefeld
关键词
D O I
10.1007/BF02099308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify when local instability of orbits of closeby points can occur for billiards in two dimensional polygons, for billiards inside three dimensional polyhedra and for geodesic flows on surfaces of three dimensional polyhedra. We sharpen a theorem of Boldrighini, Keane and Marchetti. We show that polygonal and polyhedral billiards have zero topological entropy. We also prove that billiards in polygons are positive expansive when restricted to the set of non-periodic points. The methods used are elementary geometry and symbolic dynamics.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 50 条
  • [41] Diffractive corrections in the trace formula for polygonal billiards
    Bogomolny, E
    Pavloff, N
    Schmit, C
    PHYSICAL REVIEW E, 2000, 61 (04): : 3689 - 3711
  • [42] Formation of superscar waves in plane polygonal billiards
    Bogomolny, Eugene
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (05):
  • [43] Local instability of horizontal tunnels of polygonal shape in viscoelastoplastic masses
    D. V. Gotsev
    I. A. Enenko
    A. N. Sporykhin
    Journal of Applied Mechanics and Technical Physics, 2005, 46 (2) : 267 - 274
  • [44] Entropy and complexity of polygonal billiards with spy mirrors
    Skripchenko, Alexandra
    Troubetzkoy, Serge
    NONLINEARITY, 2015, 28 (09) : 3443 - 3456
  • [45] On the Existence of Fagnano Trajectories in Convex Polygonal Billiards
    Deniz, A.
    Ratiu, A. V.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (02): : 312 - 322
  • [46] Local instability of horizontal tunnels of polygonal shape in viscoelastoplastic masses
    D. V. Gotsev
    I. A. Enenko
    A. N. Sporykhin
    Journal of Applied Mechanics and Technical Physics, 2005, 46 (2) : 267 - 274
  • [47] PLANE-WAVE QUANTIZATION FOR POLYGONAL BILLIARDS
    VEGA, JL
    UZER, T
    FORD, J
    PHYSICAL REVIEW E, 1995, 52 (02): : 1490 - 1496
  • [48] On the existence of Fagnano trajectories in convex polygonal billiards
    A. Deniz
    A.V. Ratiu
    Regular and Chaotic Dynamics, 2009, 14 : 312 - 322
  • [49] Unbounded orbits for outer billiards I
    Schwartz, Richard Evan
    JOURNAL OF MODERN DYNAMICS, 2007, 1 (03) : 371 - 424
  • [50] PERIODIC-ORBITS IN TRIANGULAR BILLIARDS
    RUIJGROK, TW
    ACTA PHYSICA POLONICA B, 1991, 22 (11-12): : 955 - 981