SHRINKAGE ESTIMATORS WITH GENERAL QUADRATIC LOSS AND DIFFERENTIABLE OR PARTIALLY DIFFERENTIABLE SHRINKAGE FUNCTION

被引:0
|
作者
CRITICOU, D
TERZAKIS, D
机构
[1] UNIV CRETE,DEPT MATH,HERAKLION,GREECE
[2] UNIV ROUEN HAUTE NORMANDIE,CNRS,UA 759,F-76130 MT ST AIGNAN,FRANCE
关键词
D O I
10.1080/07362999008809203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We place ourselves in the n-dimensional normal linear model, for which the variance is known up to a multiplicative factor. If y is observed, we denote by x the associated maximum likelihood estimator and z=y-x. We denote H(x,z) the realized shrinkage. One is dealing here with an unbiased estimator of the risk using either the differentiability with respect to x and z of H, or the partially differentiability of H with respect to x. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:127 / 156
页数:30
相关论文
共 50 条
  • [21] Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage
    Yoon, GH
    Kim, YY
    Bendsoe, MP
    Sigmund, O
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2004, 27 (03) : 139 - 150
  • [22] Shrinkage Testimators of Exponential Scale Parameter Using General Entropy Loss Function
    Srivastava, Rakesh
    Shah, Tejal
    STATISTICS AND APPLICATIONS, 2019, 17 (01): : 141 - 159
  • [23] Shrinkage and pretest estimators for longitudinal data analysis under partially linear models
    Hossain, S.
    Ahmed, S. Ejaz
    Yi, Grace Y.
    Chen, B.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (03) : 531 - 549
  • [24] Positive shrinkage, improved pretest and absolute penalty estimators in partially linear models
    Hossain, S.
    Doksum, Kjell A.
    Ahmed, S. Ejaz
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (10) : 2749 - 2761
  • [25] Pretest and shrinkage estimators in generalized partially linear models with application to real data
    Hossain, Shakhawat
    Mandal, Saumen
    Le An Lac
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (04): : 975 - 1003
  • [26] General dominance properties of double shrinkage estimators for ratio of positive parameters
    Kubokawa, Tatsuya
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 147 : 224 - 234
  • [27] A study of minimax shrinkage estimators dominating the James-Stein estimator under the balanced loss function
    Benkhaled, Abdelkader
    Hamdaoui, Abdenour
    Almutiry, Waleed
    Alshahrani, Mohammed
    Terbeche, Mekki
    OPEN MATHEMATICS, 2022, 20 (01): : 1 - 11
  • [28] A differentiable VMAF proxy as a loss function for video noise reduction
    Ramsook, Darren
    Kokaram, Anil C.
    O'Connor, Noel
    Birkbeck, Neil
    Su, Yeping
    Adsumilli, Balu
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIV, 2021, 11842
  • [29] ON THE SOLUTION OF A CLASS OF QUADRATIC PROGRAMS USING A DIFFERENTIABLE EXACT PENALTY-FUNCTION
    GRIPPO, L
    LUCIDI, S
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1990, 143 : 764 - 773
  • [30] Shrinkage Estimators of the Probability Density Function and their Asymptotic Properties under Association
    Mahmoudi, Marzieh
    Arashi, Mohammad
    Nezakati, Ahmad
    JIRSS-JOURNAL OF THE IRANIAN STATISTICAL SOCIETY, 2019, 18 (02): : 173 - 197