GROUP-INVARIANT SOLUTIONS AND OPTIMAL SYSTEMS FOR MULTIDIMENSIONAL HYDRODYNAMICS

被引:70
|
作者
COGGESHALL, SV [1 ]
MEYERTERVEHN, J [1 ]
机构
[1] LOS ALAMOS NATL LAB,LOS ALAMOS,NM 87545
关键词
D O I
10.1063/1.529907
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The group properties of the three-dimensional (3-D), one-temperature hydrodynamic equations, including nonlinear conduction and a thermal source, are presented. A subgroup corresponding to axisymmetric geometry is chosen, and the details of the construction of the one- and two-dimensional optimal systems are shown. The two-dimensional optimal system is used to generate 23 intrinsically different reductions of the 2-D partial differential equations to ordinary differential equations. These ordinary differential equations can be solved to provide analytic solutions to the original partial differential equations. Two example analytic solutions are presented: a 2-D axisymmetric flow with a P2 asymmetry and a 3-D spiraling flow.
引用
收藏
页码:3585 / 3601
页数:17
相关论文
共 50 条
  • [21] Conservation laws and group-invariant solutions of the von Karman equations
    Djondjorov, PA
    Vassilev, VM
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1996, 31 (01) : 73 - 87
  • [22] Symmetric abelian group-invariant Steiner quadruple systems
    Ji, Lijun
    Lu, Xiao-Nan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 181
  • [23] Group-invariant solutions of relativistic and nonrelativistic models in field theory
    Grundland, AM
    Hariton, AJ
    Hussin, V
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (07) : 2874 - 2890
  • [24] Travelling Wave Group-Invariant Solutions and Conservation Laws for θ-Equation
    Johnpillai, A. G.
    Khalique, C. M.
    Mahomed, F. M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 13 - 29
  • [25] Group-invariant solutions for the Ricci curvature equation and the Einstein equation
    Pina, Romildo
    dos Santos, Joao Paulo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (04) : 2214 - 2231
  • [26] QUASISOLUTIONS AS GROUP-INVARIANT SOLUTIONS FOR PARTIAL-DIFFERENTIAL EQUATIONS
    PUCCI, E
    SACCOMANDI, G
    STUDIES IN APPLIED MATHEMATICS, 1995, 94 (03) : 211 - 223
  • [27] Group-invariant Subspace Clustering
    Aeron, Shuchin
    Kernfeld, Eric
    2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 666 - 671
  • [28] Group-invariant percolation on graphs
    Benjamini, I
    Lyons, R
    Peres, Y
    Schramm, O
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (01) : 29 - 66
  • [29] Group-invariant Percolation on Graphs
    I. Benjamini
    R. Lyons
    Y. Peres
    O. Schramm
    Geometric & Functional Analysis GAFA, 1999, 9 : 29 - 66
  • [30] Group-Invariant Max Filtering
    Cahill, Jameson
    Iverson, Joseph W.
    Mixon, Dustin G.
    Packer, Daniel
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2024,