EFFICIENT TIME PROPAGATION FOR FINITE-DIFFERENCE REPRESENTATIONS OF THE TIME-DEPENDENT SCHRODINGER-EQUATION

被引:23
|
作者
CERJAN, C
KULANDER, KC
机构
[1] Lawrence Livermore National Laboratory, Livermore
关键词
D O I
10.1016/0010-4655(91)90274-O
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The applicability of the Chebyshev time propagation algorithm for the solution of the time-dependent Schrodinger equation is investigated within the context of differencing schemes for the representation of the spatial operators. Representative numerical tests for the harmonic oscillator and Morse potentials display the utility and limitations of this combined approach. Substantial increases in time step are possible for these lower-order methods compared with other propagators commonly used in differencing schemes, but if very high accuracy is desired for these cases difference methods remain less efficient computationally than the corresponding spectral spatial representation when both methods are applicable.
引用
收藏
页码:529 / 537
页数:9
相关论文
共 50 条