AXISYMMETRIC PROBLEM FOR A SPACE WITH A PERIODIC SYSTEM OF THIN INCLUSIONS

被引:0
|
作者
PANASYUK, VV
STADNIK, MM
SILOVANYUK, VP
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:42 / 45
页数:4
相关论文
共 50 条
  • [31] Nonstationary Axisymmetric Problem for a Half-Space of a Compressible Fluid*
    Kubenko, V. D.
    INTERNATIONAL APPLIED MECHANICS, 2021, 57 (05) : 509 - 523
  • [32] AXISYMMETRIC BOUSSINESQ PROBLEM FOR A SEMI-SPACE IN MICROPOLAR THEORY
    DHALIWAL, RS
    KHAN, SM
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1976, 14 (08) : 769 - 788
  • [33] Axisymmetric Contact Problem for a Half Space with Nonspecified Zones of Interaction
    T. Ya. Solyar
    O. I. Soliar
    Journal of Mathematical Sciences, 2025, 287 (2) : 321 - 333
  • [34] AXISYMMETRIC PROBLEM FOR A HALF-SPACE IN MICROPOLAR THEORY OF ELASTICITY
    KHAN, SM
    DHALIWAL, RS
    JOURNAL OF ELASTICITY, 1977, 7 (01) : 13 - 32
  • [35] On the problem of an axisymmetric thin film bonded to a transversely isotropic substrate
    Alinia, Yadolah
    Guler, Mehmet Ali
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 248
  • [36] Dimension reduction in the plate with a system of periodic unidirectional inclusions
    Kolpakov, A. G.
    Rakin, S., I
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (28) : 7559 - 7568
  • [37] Inverse doubly periodic problem of the theory of bending of a plate with elastic inclusions
    Bakhyshov F.A.
    Mirsalimov V.M.
    Journal of Applied Mechanics and Technical Physics, 2006, 47 (4) : 588 - 595
  • [38] A PERIODIC BOUNDARY VALUE PROBLEM FOR SEMILINEAR DIFFERENTIAL INCLUSIONS OF A FRACTIONAL ORDER 2 < q < 3 IN A BANACH SPACE
    Petrosyan, Garik
    Soroka, Maria
    Wen, Ching-Feng
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (12) : 2795 - 2813
  • [39] BENDING OF A PLATE WITH A SYSTEM OF THIN ELASTIC INCLUSIONS
    GRILITSKII, DV
    OPANASOVICH, VK
    DRAGAN, MS
    SOVIET APPLIED MECHANICS, 1984, 20 (09): : 848 - 852
  • [40] MULTISCALE ANALYSIS OF A MODEL PROBLEM OF A THERMOELASTIC BODY WITH THIN INCLUSIONS
    Sazhenkov, S. A.
    Fankina, I., V
    Furtsev, A., I
    Gilev, P., V
    Gorynin, A. G.
    Gorynina, O. G.
    Karnaev, V. M.
    Leonova, E., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2021, 18 : 282 - 318