PARABOLIC APPROXIMATIONS OF THE CONVECTION-DIFFUSION EQUATION

被引:7
|
作者
LOHEAC, JP
NATAF, F
SCHATZMAN, M
机构
[1] ECOLE POLYTECH,CTR MATH APPL,F-91128 PALAISEAU,FRANCE
[2] UNIV LYON 1,ANAL NUMER LAB,F-69622 VILLEURBANNE,FRANCE
关键词
CONVECTION-DIFFUSION EQUATION;
D O I
10.2307/2153100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an approximation of the convection-diffusion operator which consists in the product of two parabolic operators. This approximation is much easier to solve than the full convection-diffusion equation, which is elliptic in space. We prove that this approximation is of order three in the viscosity and that the classical parabolic approximation is of order one in the viscosity. Numerical examples are given to demonstrate the effectiveness of our new approximation.
引用
收藏
页码:515 / 530
页数:16
相关论文
共 50 条
  • [41] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    ZHAO Ming-deng
    [J]. Journal of Hydrodynamics, 2008, (01) : 47 - 53
  • [42] HOMOGENIZATION OF CONVECTION-DIFFUSION EQUATION IN INFINITE CYLINDER
    Pankratova, Iryna
    Piatnitski, Andrey
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2011, 6 (01) : 111 - 126
  • [43] An exponent difference scheme for the convection-diffusion equation
    Zheng, Wen-jun
    Zong, Er-jie
    Chen, Yan
    [J]. Advances in Matrix Theory and Applications, 2006, : 467 - 469
  • [44] A block circulant preconditioner for the convection-diffusion equation
    Karaa, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 851 - 856
  • [45] Finite Proximate Method for Convection-Diffusion Equation
    Ming-deng Zhao
    Tai-ru Li
    Wen-xin Huai
    Liang-liang Li
    [J]. Journal of Hydrodynamics, 2008, 20 : 47 - 53
  • [46] On the finite difference approximation to the convection-diffusion equation
    Salkuyeh, Davod Khojasteh
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (01) : 79 - 86
  • [47] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    Zhao Ming-deng
    Li Tai-ru
    Huai Wen-xin
    Li Liang-liang
    [J]. JOURNAL OF HYDRODYNAMICS, 2008, 20 (01) : 47 - 53
  • [48] ADI AS A PRECONDITIONING FOR SOLVING THE CONVECTION-DIFFUSION EQUATION
    CHIN, RCY
    MANTEUFFEL, TA
    DEPILLIS, J
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02): : 281 - 299
  • [49] A method of asymptotic constructions with improved accuracy for a quasilinear singularly perturbed parabolic convection-diffusion equation
    Shishkin G.I.
    [J]. Computational Mathematics and Mathematical Physics, 2006, 46 (2) : 231 - 250
  • [50] Grid approximation of a parabolic convection-diffusion equation on a priori adapted grids: ε-uniformly convergent schemes
    G. I. Shishkin
    [J]. Computational Mathematics and Mathematical Physics, 2008, 48 : 956 - 974