MAXIMUM PRINCIPLES OF NONHOMOGENEOUS SUBELLIPTIC P-LAPLACE EQUATIONS AND APPLICATIONS

被引:0
|
作者
Liu Haifeng [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Shaanxi, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Subelliptic p-Laplacian; maximum principle; Harnack inequality;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Maximum principles for weak solutions of nonhomogeneous subelliptic p-Laplace equations related to smooth vector fields {X-j} satisfying the Hormander condition are proved by the choice of suitable test functions and the adaption of the classical Moser iteration method. Some applications are given in this paper.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
  • [41] ANISOTROPIC p-LAPLACE EQUATIONS ON LONG CYLINDRICAL DOMAIN
    Jana, Purbita
    OPUSCULA MATHEMATICA, 2024, 44 (02) : 249 - 265
  • [42] Nodal solutions for p-Laplace equations with critical growth
    Deng, YB
    Guo, ZH
    Wang, GS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (06) : 1121 - 1151
  • [43] Infinitely Many Solutions to a Class of p-Laplace Equations
    Yi-Hua Deng
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 770 - 779
  • [44] Infinitely Many Solutions to a Class of p-Laplace Equations
    Deng, Yi-Hua
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (04): : 770 - 779
  • [45] BMO SOLUTIONS TO QUASILINEAR EQUATIONS OF p-LAPLACE TYPE
    Nguyen Cong Phuc
    Verbitsky, Igor E.
    ANNALES DE L INSTITUT FOURIER, 2022, 72 (05) : 1911 - 1939
  • [46] Regularity of the extremal solution for singular p-Laplace equations
    Castorina, Daniele
    MANUSCRIPTA MATHEMATICA, 2015, 146 (3-4) : 519 - 529
  • [47] CONCAVE SOLUTIONS TO FINSLER p-LAPLACE TYPE EQUATIONS
    Mosconi, Sunra
    Riey, Giuseppe
    Squassina, Marco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (12) : 3669 - 3697
  • [48] Solutions for a class of p-Laplace equations with potentials in RN
    Wu, Mingzhu
    Yang, Zuodong
    APPLICABLE ANALYSIS, 2009, 88 (12) : 1755 - 1762
  • [49] Equivalence of solutions to fractional p-Laplace type equations
    Korvenpaa, Janne
    Kuusi, Tuomo
    Lindgren, Erik
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 1 - 26
  • [50] Positive solution of some singular p-Laplace equations
    Lu, H.S.
    Lanzhou Daxue Xuebao/Journal of Lanzhou University, 2001, 37 (01):