ON THE CONSTRUCTION OF PERFECT MORSE FUNCTIONS ON COMPACT MANIFOLDS OF COHERENT STATES

被引:11
|
作者
BERCEANU, S
GHEORGHE, A
机构
关键词
D O I
10.1063/1.527691
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2899 / 2907
页数:9
相关论文
共 50 条
  • [31] Optimal discrete Morse functions for 2-manifolds
    Lewiner, T
    Lopes, H
    Tavares, G
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 26 (03): : 221 - 233
  • [32] Morse-Smale theory for flows on covering spaces of compact manifolds
    Luxemburg, Leon A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 9 (02) : 197 - 212
  • [33] EIGENSTATES, COHERENT STATES, AND UNCERTAINTY PRODUCTS FOR THE MORSE OSCILLATOR
    NIETO, MM
    SIMMONS, LM
    PHYSICAL REVIEW A, 1979, 19 (02): : 438 - 444
  • [34] A SIMPLE ALGEBRAIC APPROACH TO COHERENT STATES FOR THE MORSE OSCILLATOR
    COOPER, IL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (06): : 1671 - 1683
  • [35] Barut-Girardello coherent states for the Morse potential
    Fakhri, H
    Chenaghlou, A
    PHYSICS LETTERS A, 2003, 310 (01) : 1 - 8
  • [36] Photon-added coherent states for the Morse oscillator
    Popov, D
    Zaharie, I
    Dong, SH
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (02) : 157 - 176
  • [37] Parametric-time coherent states for Morse potential
    Unal, N
    CANADIAN JOURNAL OF PHYSICS, 2002, 80 (08) : 875 - 881
  • [38] Creation and annihilation operators for the Morse oscillator and the coherent states
    Draganescu, GE
    Avram, NM
    CANADIAN JOURNAL OF PHYSICS, 1998, 76 (04) : 273 - 281
  • [39] Algebraic approach to the Morse potential and its coherent states
    Dong, SH
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2002, 216 : 103 - 108
  • [40] Static perfect fluid space-time on compact manifolds
    Coutinho, F.
    Diogenes, R.
    Leandro, B.
    Ribeiro, E., Jr.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (01)