MAXWELLS EQUATIONS AND COMPLEX MINKOWSKI SPACE

被引:70
|
作者
NEWMAN, ET [1 ]
机构
[1] UNIV PITTSBURGH, DEPT PHYS, PITTSBURGH, PA 15213 USA
关键词
D O I
10.1063/1.1666160
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:102 / 103
页数:2
相关论文
共 50 条
  • [21] MAXWELLS GRID EQUATIONS
    BARTS, T
    BROWMAN, J
    COOPER, RK
    DEHLER, M
    DOHLUS, M
    EBELING, F
    FISCHERAUER, A
    FISCHERAUER, G
    HAHNE, P
    KLATT, R
    KRAWCZYK, F
    MARX, M
    PROPPER, T
    RODENZ, G
    RUSTHOI, D
    SCHUTT, P
    STEFFEN, B
    WEILAND, T
    WIPF, SG
    FREQUENZ, 1990, 44 (01) : 9 - 16
  • [22] A DERIVATION OF MAXWELLS EQUATIONS
    KREFETZ, E
    AMERICAN JOURNAL OF PHYSICS, 1970, 38 (04) : 513 - &
  • [23] MAXWELLS EQUATIONS IN DYNAMICS
    CHENG, CC
    AMERICAN JOURNAL OF PHYSICS, 1966, 34 (07) : 622 - &
  • [24] MAXWELLS EQUATIONS IN RIEMANN-CARTAN SPACE-U4
    PRASANNA, AR
    PHYSICS LETTERS A, 1975, 54 (01) : 17 - 18
  • [25] ON THE DERIVATION OF MAXWELLS EQUATIONS
    DEGROOT, SR
    VLIEGER, J
    PHYSICS LETTERS, 1964, 10 (03): : 294 - 295
  • [26] ON DERIVATION OF MAXWELLS EQUATIONS
    DEGROOT, SR
    VLIEGER, J
    NUOVO CIMENTO, 1964, 33 (04): : 1225 - +
  • [27] On the Minkowski Formula for Hypersurfaces in Complex Space Forms
    Martino, Vittorio
    Tralli, Giulio
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) : 1270 - 1296
  • [28] Dirac Equations in Nilpotent Quaternionic Space-Antispace and Eight Dimensional (8D) Complex Minkowski Space
    Rauscher, Elizabeth A.
    Rowlands, Peter
    Amoroso, Richard L.
    UNIFIED FIELD MECHANICS: NATURAL SCIENCE BEYOND THE VEIL OF SPACETIME, 2016, : 66 - 87
  • [29] INTEGRATION OF NEWMAN-PENROSE EQUATIONS IN MINKOWSKI SPACE
    PONS, R
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1972, 16 (01): : 51 - &
  • [30] Hasimoto Maps for Nonlinear Schrodinger Equations in Minkowski Space
    Gurbuz, Nevin Ertug
    Yuzbasi, Zuhal Kucukarslan
    Yoon, Dae Won
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2022, 29 (04) : 761 - 775