ASYNCHRONOUS AUTOMATA VERSUS ASYNCHRONOUS CELLULAR-AUTOMATA

被引:9
|
作者
PIGHIZZINI, G
机构
[1] Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, I-20135 Milano
关键词
D O I
10.1016/0304-3975(94)90232-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we compare and study some properties of two mathematical models of concurrent systems, asynchronous automata (Zielonka, 1987) and asynchronous cellular automata (Zielonka, 1989). First, we show that these models are ''polynomially'' related, exhibiting polynomial-time reductions between them. Subsequently, we prove that, in spite of that, the classes of asynchronous automata and of asynchronous cellular automata recognizing a given trace language are; in general, deeply different. In fact, we exhibit a recognizable trace language T with the following properties: there exists a unique minimum asynchronous automaton accepting T,does not exist a unique minimum asynchronous cellular automaton, but there are infinitely many minimal (i.e., unreducible) nonisomorphic asynchronous cellular automata accepting T. We characterize the class of concurrent alphabets for which every recognizable trace language admits a minimum finite state asynchronous cellular automaton as the class of alphabets with full concurrency relation. Finally, extending a result of (Bruschi et al., 1988), we show that for every concurrent alphabet with nontransitive dependency relation, there exists a trace language accepted by infinitely many minimal nonisomorphic asynchronous automata.
引用
收藏
页码:179 / 207
页数:29
相关论文
共 50 条
  • [41] Construction universality in purely asynchronous cellular automata
    Takada, Yousuke
    Isokawa, Teijiro
    Peper, Ferdinand
    Matsui, Nobuyuki
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (08) : 1368 - 1385
  • [42] Effect of asynchronous updating on the stability of cellular automata
    Baetens, J. M.
    Van der Weeen, P.
    De Baets, B.
    [J]. CHAOS SOLITONS & FRACTALS, 2012, 45 (04) : 383 - 394
  • [43] Reliable crossing of signals in asynchronous cellular automata
    He, Tai-Ran
    Li, Guo-Long
    Lee, Jia
    Peper, Ferdinand
    [J]. 2014 SECOND INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2014, : 476 - 479
  • [44] Universality of hexagonal asynchronous totalistic cellular automata
    Adachi, S
    Peper, F
    Lee, J
    [J]. CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 91 - 100
  • [45] Computational complexity of finite asynchronous cellular automata
    Dennunzio, Alberto
    Formenti, Enrico
    Manzoni, Luca
    Mauri, Giancarlo
    Porreca, Antonio E.
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 664 : 131 - 143
  • [46] ON OSCILLATIONS IN CELLULAR-AUTOMATA
    HEMMINGSSON, J
    HERRMANN, HJ
    [J]. EUROPHYSICS LETTERS, 1993, 23 (01): : 15 - 19
  • [47] DIVISIBILITY AND CELLULAR-AUTOMATA
    CRESPO, CC
    PONTEVILLE, C
    DESPINADEL, VW
    [J]. CHAOS SOLITONS & FRACTALS, 1995, 6 : 105 - &
  • [48] DECOMPOSITION OF ASYNCHRONOUS AUTOMATA
    POTTOSIN, JV
    [J]. AVTOMATIKA I VYCHISLITELNAYA TEKHNIKA, 1978, (04): : 1 - 7
  • [49] Automata of asynchronous behaviors
    Brzozowski, JA
    Negulescu, R
    [J]. AUTOMATA IMPLEMENTATION, 1998, 1436 : 29 - 45
  • [50] Automata of asynchronous behaviors
    Brzozowski, JA
    Negulescu, R
    [J]. THEORETICAL COMPUTER SCIENCE, 2000, 231 (01) : 113 - 128