A CHVATAL-ERDOS TYPE CONDITION FOR HAMILTONIAN GRAPHS

被引:3
|
作者
LU, XY
机构
[1] Department of Mathematics, University of Illinois at Urbana—Champaign, Urbana, Illinois
关键词
D O I
10.1002/jgt.3190180804
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a simple graph G of order n greater than or equal to 3, define theta(G) = min{(d(A,($) over bar A))/\($) over bar A\; empty-set not equal A subset of V). We shall prove the following Chvatal-Erdos type condition: If alpha(G) less than or equal to beta(G)n, then G is Hamiltonian. (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:791 / 800
页数:10
相关论文
共 50 条
  • [21] Paths partition with prescribed beginnings in digraphs: A Chvatal-Erdos condition approach
    Bessy, S.
    DISCRETE MATHEMATICS, 2008, 308 (18) : 4108 - 4115
  • [22] A Chvatal-Erdos condition for the existence of a cycle intersecting specified connected subgraphs
    Chiba, Shuya
    Tsugaki, Masao
    Yamashita, Tomoki
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [23] THE EXISTENCE OF A 2-FACTOR IN A GRAPH SATISFYING THE LOCAL CHVATAL-ERDOS CONDITION
    Chen, Guantao
    Saito, Akira
    Shan, Songling
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) : 1788 - 1799
  • [24] A CHVATAL-ERDOS CONDITION FOR (T,T)-FACTORS IN DIGRAPHS USING GIVEN ARCS
    FRAISSE, P
    ORDAZ, O
    DISCRETE MATHEMATICS, 1988, 71 (02) : 143 - 148
  • [25] A 2-factor with two components of a graph satisfying the Chvatal-Erdos condition
    Kaneko, A
    Yoshimoto, K
    JOURNAL OF GRAPH THEORY, 2003, 43 (04) : 269 - 279
  • [26] Spanning trails with variations of Chvatal-Erdos conditions
    Chen, Zhi-Hong
    Lai, Hong-Jian
    Zhang, Meng
    DISCRETE MATHEMATICS, 2017, 340 (02) : 243 - 251
  • [27] Chvatal-Erdos Conditions and Almost Spanning Trails
    Lei, Lan
    Li, Xiaomin
    Ma, Xiaoling
    Zhan, Mingquan
    Lai, Hong-Jian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4375 - 4391
  • [28] CHVATAL-ERDOS CONDITIONS FOR 2-CYCLABILITY IN DIGRAPHS
    JACKSON, B
    ORDAZ, O
    ARS COMBINATORIA, 1988, 25 : 39 - 49
  • [29] Chvatal-Erdos Theorem: Old Theorem with New Aspects
    Saito, Akira
    COMPUTATIONAL GEOMETRY AND GRAPH THEORY, 2008, 4535 : 191 - 200
  • [30] ORE TYPE CONDITION AND HAMILTONIAN GRAPHS
    Zhao, Kewen
    MATEMATICKI VESNIK, 2013, 65 (03): : 412 - 418