Optimal Control and Stochastic Parameter Estimation

被引:1
|
作者
Ngnepieba, Pierre [1 ]
Hussaini, M. Y. [2 ,3 ]
Debreu, Laurent [2 ,3 ]
机构
[1] Florida A&M Univ, Dept Math, Tallahassee, FL 32307 USA
[2] Florida State Univ, Sch Computat Sci, Tallahassee, FL 32306 USA
[3] Univ Joseph Fourier, Lab Modelisat & Calcul, Projet IDOPT, F-38041 Grenoble 9, France
来源
MONTE CARLO METHODS AND APPLICATIONS | 2006年 / 12卷 / 5-6期
关键词
Monte Carlo method; covariance matrix; Hessian matrix; Bayesian inference; Burgers equation;
D O I
10.1163/156939606779329062
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An efficient sampling method is proposed to solve the stochastic optimal control problem in the context of data assimilation for the estimation of a random parameter. It is based on Bayesian inference and the Markov Chain Monte Carlo technique, which exploits the relation between the inverse Hessian of the cost function and the error covariance matrix to accelerate convergence of the sampling method. The efficiency and accuracy of the method is demonstrated in the case of the optimal control problem governed by the nonlinear Burgers equation with a viscosity parameter that is a random field.
引用
收藏
页码:461 / 476
页数:16
相关论文
共 50 条