2-DESCENT FOR ELLIPTIC CURVES IN CHARACTERISTIC 2

被引:6
|
作者
KRAMER, K [1 ]
机构
[1] CUNY,QUEENS COLL,DEPT MATH,FLUSHING,NY 11367
关键词
D O I
10.2307/1998941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:279 / 295
页数:17
相关论文
共 50 条
  • [31] Hyperelliptic curves in characteristic 2
    Scholten, J
    Zhu, HJ
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (17) : 905 - 917
  • [32] DESCENT ON ELLIPTIC CURVES AND HILBERT'S TENTH PROBLEM
    Eisentraeger, Kirsten
    Everest, Graham
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) : 1951 - 1959
  • [33] Constructive and destructive facets of Weil descent on elliptic curves
    Gaudry, P
    Hess, F
    Smart, NR
    [J]. JOURNAL OF CRYPTOLOGY, 2002, 15 (01) : 19 - 46
  • [34] Nonlinear steepest descent approach to orthogonality on elliptic curves
    Bertola, M.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2022, 276
  • [35] Constructive and destructive facets of Weil descent on elliptic curves
    P. Gaudry
    F. Hess
    N. P. Smart
    [J]. Journal of Cryptology, 2002, 15 : 19 - 46
  • [36] On second 2-descent and non-congruent numbers (vol 170, pg 343, 2015)
    Ouyang, Yi
    Zhang, Shenxing
    [J]. ACTA ARITHMETICA, 2022, 202 (02) : 203 - 203
  • [37] Constructive and destructive facets of weil descent on elliptic curves
    Smart, Nigel
    Hess, Florian
    Gaudry, Pierrick
    [J]. HP Laboratories Technical Report, 2000, (10):
  • [38] Quadratic forms and Genus Theory: A link with 2-descent and an application to nontrivial specializations of ideal classes
    Dallaporta, William
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (06):
  • [39] Mod 2 representations of elliptic curves
    Rubin, K
    Silverberg, A
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (01) : 53 - 57
  • [40] NOTES ON ELLIPTIC CURVES .2.
    BIRCH, BJ
    SWINNERT.HP
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1965, 218 (JUN): : 79 - &