Transversals in plane hyperbolic geometry

被引:1
|
作者
Knueppel, Frieder [1 ]
机构
[1] Univ Kiel, Kiel, Germany
关键词
Transversals; plane hyperbolic geometry;
D O I
10.1007/s00022-013-0187-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a plane hyperbolic geometry (in the sense of F. Bachmann's book ' Aufbau der Geometrie aus dem Spiegelungsbegriff') we prove that an asymptotic n-gon does not admit a transversal when n is odd; the assumption of n being odd is crucial. For each n one finds an asymptotic n-gon that does not have a transversal.
引用
收藏
页码:13 / 20
页数:8
相关论文
共 50 条
  • [41] GEOMETRY OF HYPERBOLIC MONOPOLES
    NASH, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (08) : 2160 - 2164
  • [42] DISCRETE HYPERBOLIC GEOMETRY
    NEUMAIER, A
    SEIDEL, JJ
    COMBINATORICA, 1983, 3 (02) : 219 - 237
  • [43] Quantum hyperbolic geometry
    Baseilhac, Stephane
    Benedetti, Riccardo
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 : 845 - 917
  • [44] On the hyperbolic unitary geometry
    Altmann, Kristina
    Gramlich, Ralf
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 31 (04) : 547 - 583
  • [45] On the hyperbolic symplectic geometry
    Gramlich, R
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2004, 105 (01) : 97 - 110
  • [46] Hyperbolic geometry and disks
    Gehring, FW
    Hag, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 275 - 284
  • [47] Crocheting the hyperbolic plane
    Henderson, D
    Taimina, D
    MATHEMATICAL INTELLIGENCER, 2001, 23 (02): : 17 - 28
  • [48] The hyperbolic Brownian plane
    Thomas Budzinski
    Probability Theory and Related Fields, 2018, 171 : 503 - 541
  • [49] REFLECTIONS ON THE HYPERBOLIC PLANE
    Lecian, Orchidea Maria
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2013, 22 (14):
  • [50] Percolation in the hyperbolic plane
    Benjamini, I
    Schramm, O
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) : 487 - 507