DYNAMICS OF LEARNING AND GENERALIZATION IN PERCEPTRONS WITH CONSTRAINTS

被引:2
|
作者
HORNER, H
机构
[1] Institut für Theorestische Physik, Universität Heidelberg, D-6900 Heidelberg
来源
PHYSICA A | 1993年 / 200卷 / 1-4期
关键词
D O I
10.1016/0378-4371(93)90560-Q
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Depending on the kind of constraints imposed on the weights of a perceptron, learning can be a combinatorially hard problem. As an example of this type, I discuss a perceptron with binary weights comparing results obtained from replica theory, dynamic mean field theory and simulated annealing. Contrary to the replica calculation, dynamics yields information about the performance of a polynomial algorithm in a situation where the best solution cannot be found in polynomial time. I also discuss improved learning algorithms and results for finite size perceptrons.
引用
收藏
页码:552 / 562
页数:11
相关论文
共 50 条
  • [41] GENERALIZATION ABILITY AND INFORMATION GAIN OF CLOCK-MODEL PERCEPTRONS
    SCHOTTKY, B
    GERL, F
    KREY, U
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 96 (02): : 279 - 289
  • [42] Generalization of Dynamics Learning Across Changes in Movement Amplitude
    Mattar, Andrew A. G.
    Ostry, David J.
    JOURNAL OF NEUROPHYSIOLOGY, 2010, 104 (01) : 426 - 438
  • [43] Out-of-distribution generalization for learning quantum dynamics
    Matthias C. Caro
    Hsin-Yuan Huang
    Nicholas Ezzell
    Joe Gibbs
    Andrew T. Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Zoë Holmes
    Nature Communications, 14
  • [44] Out-of-distribution generalization for learning quantum dynamics
    Caro, Matthias C.
    Huang, Hsin-Yuan
    Ezzell, Nicholas
    Gibbs, Joe
    Sornborger, Andrew T.
    Cincio, Lukasz
    Coles, Patrick J.
    Holmes, Zoe
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [45] Effects of Human Arm Impedance on Dynamics Learning and Generalization
    Darainy, Mohammad
    Mattar, Andrew A. G.
    Ostry, David J.
    JOURNAL OF NEUROPHYSIOLOGY, 2009, 101 (06) : 3158 - 3168
  • [46] Grounding Language to Entities and Dynamics for Generalization in Reinforcement Learning
    Hanjie, Austin W.
    Zhong, Victor
    Narasimhan, Karthik
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [47] Spatial generalization from learning dynamics of reaching movements
    Shadmehr, R
    Moussavi, ZMK
    JOURNAL OF NEUROSCIENCE, 2000, 20 (20): : 7807 - 7815
  • [48] A GENERALIZATION OF DYNAMIC CONSTRAINTS
    PLATT, J
    CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1992, 54 (06): : 516 - 525
  • [49] NONLINEAR DYNAMICS OF FEEDBACK MULTILAYER PERCEPTRONS
    BAUER, HU
    GEISEL, T
    PHYSICAL REVIEW A, 1990, 42 (04): : 2401 - 2409
  • [50] Statistical active learning in multilayer perceptrons
    Fukumizu, K
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01): : 17 - 26