SINGULARLY CONTINUOUS MEASURES IN NEVAIS CLASS-M

被引:14
|
作者
LUBINSKY, DS
机构
关键词
ORTHOGONAL POLYNOMIALS; RECURRENCE RELATIONS; NEVAIS CLASS-M; SINGULARLY CONTINUOUS MEASURES;
D O I
10.2307/2048330
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d-nu be a nonnegative Borel measure on [-pi, pi], with 0 < integral-pi-pi d-nu < infinity and with support of Lebesgue measure zero. We show that there exist {eta-j}j infinity = 1 subset-of (0, infinity) and {t(j)}j infinity = 1 subset-of (-pi, pi) such that if [GRAPHICS] (with the usual periodic extension d-nu-(theta +/- 2-pi) = d-nu-(theta)), then the leading coefficients {k(n)(d-mu)}n infinity = 0 of the orthonormal polynomials for d-mu satisfy [GRAPHICS] As a consequence, we obtain pure singularly continuous measures d-alpha on [-1,1] lying in Nevai's class M.
引用
收藏
页码:413 / 420
页数:8
相关论文
共 50 条
  • [41] Astrodynamical Space Test of Relativity Using Optical Devices I (ASTROD I)—A class-M fundamental physics mission proposal for Cosmic Vision 2015–2025
    Thierry Appourchaux
    Raymond Burston
    Yanbei Chen
    Michael Cruise
    Hansjörg Dittus
    Bernard Foulon
    Patrick Gill
    Laurent Gizon
    Hugh Klein
    Sergei Klioner
    Sergei Kopeikin
    Hans Krüger
    Claus Lämmerzahl
    Alberto Lobo
    Xinlian Luo
    Helen Margolis
    Wei-Tou Ni
    Antonio Pulido Patón
    Qiuhe Peng
    Achim Peters
    Ernst Rasel
    Albrecht Rüdiger
    Étienne Samain
    Hanns Selig
    Diana Shaul
    Timothy Sumner
    Stephan Theil
    Pierre Touboul
    Slava Turyshev
    Haitao Wang
    Li Wang
    Linqing Wen
    Andreas Wicht
    Ji Wu
    Xiaomin Zhang
    Cheng Zhao
    [J]. Experimental Astronomy, 2009, 23 : 491 - 527
  • [42] Rationalization of singularly perturbed continuous systems with time delays
    Shim, KH
    Sawan, ME
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2003, 34 (04) : 263 - 268
  • [43] A Class of Singularly Perturbed Problems for Nonlinear Elliptic Equations
    ZHANG Han-lin (College of Applied Science
    [J]. Chinese Quarterly Journal of Mathematics, 2005, (04) : 385 - 389
  • [44] A class of singularly perturbed nonlinear boundary value problem
    Jiaqi M.
    Wantao L.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2005, 20 (2) : 159 - 164
  • [45] APPROXIMATE FEEDBACK DESIGN FOR A CLASS OF SINGULARLY PERTURBED SYSTEMS
    MAHMOUD, MS
    HASSAN, MF
    SINGH, MG
    [J]. IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1982, 129 (02): : 49 - 56
  • [46] A class of singularly perturbed singular Volterra integral equations
    Skinner, LA
    [J]. ASYMPTOTIC ANALYSIS, 2000, 22 (02) : 113 - 127
  • [47] A Class of Nonlinear Singularly Perturbed Problems of Fourth Order
    莫嘉琪
    刘树德
    [J]. Chinese Quarterly Journal of Mathematics, 1997, (01) : 35 - 37
  • [48] Robust Stabilization for a Class of Nonlinear Singularly Perturbed Systems
    Amjadifard, R.
    Beheshti, M. T. H.
    Yazdanpanah, M. J.
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2011, 133 (05):
  • [49] ASYMPTOTIC STABILITY OF A CLASS OF NONLINEAR SINGULARLY PERTURBED SYSTEMS
    CHOW, JH
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1978, 305 (05): : 275 - 281
  • [50] FEEDBACK EQUIVALENCE FOR A CLASS OF NONLINEAR SINGULARLY PERTURBED SYSTEMS
    KHORASANI, K
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (12) : 1359 - 1363