GALOIS MODULE STRUCTURE OF THE INTEGERS IN WILDLY RAMIFIED CYCLIC EXTENSIONS

被引:3
|
作者
ELDER, GG [1 ]
MADAN, ML [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
D O I
10.1006/jnth.1994.1031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with the Galois module structure of the ring of integers in totally ramified cyclic extensions, L/K, of local fields whose characteristic is zero, [L:A] = p(m), m arbitrary and p an odd prime. Under a restriction on the first ramification number, the structure of the ring of integers of L is described in terms of explicit indecomposable Z(p)[G]-modules, G denoting the Galois group and Z(p), the ring of p-adic integers. This explicit description is an extension of the results in a recent paper of M. Rzedowski-Calderon, G. D. Villa-Salvador, and M. L. Madan (1990, Math. Z. 204, 401-424). (C) 1994 Academic Press, Inc.
引用
收藏
页码:138 / 174
页数:37
相关论文
共 50 条