On an eigenvalue for the Laplace operator in a disk with Dirichlet boundary condition on a small part of the boundary in a critical case

被引:0
|
作者
Gadylshin, R. R. [1 ,2 ]
Repjevskij, S. V. [3 ]
Shishkina, E. A. [2 ]
机构
[1] Bashkir State Pedag Univ, Phys Mat Sci, Ufa, Russia
[2] Bashkir State Pedag Univ, Ufa, Russia
[3] Chelyabinsk State Univ, Chelyabinsk, Russia
来源
关键词
Laplace operator; singular perturbation; small parameter; eigenvalue; asymptotics;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A boundary-value problem of finding eigenvalues is considered for the negative Laplace operator in a disk with Neumann boundary condition on almost all circle except for a small arc of vanishing length, where the Dirichlet boundary condition is imposed. Complete asymptotic expansions with respect to a parameter (the length of the small arc) are constructed for an eigenvalue of this problem; the eigenvalue converges to a double eigenvalue of the Neumann problem.
引用
收藏
页码:56 / 70
页数:15
相关论文
共 50 条