DISCRETIZATION OF A CONVECTION-DIFFUSION EQUATION

被引:13
|
作者
MORTON, KW
SOBEY, IJ
机构
[1] Numerical Analysis Group, Oxford University Computing Laboratory, Oxford OX1 3QD
关键词
D O I
10.1093/imanum/13.1.141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The unsteady convection-diffusion equation with constant coefficients admits an exact solution in the form of a convolution integral, which provides an explicit representation of the evolution operator through one time step. This is used to unify many numerical schemes for the equation, showing interrelationships between finite difference and finite element schemes and presenting a general framework for detailed error analysis. In particular, the upwind scheme, Lax Wendroff, QUICKEST, the ECG schemes and Crank Nicolson are all members of a family that includes powerful new schemes. Fourier analysis is used to obtain practical stability regions and some insights into accuracy; and the Peano kernel theorem is also used to derive rigorous error bounds that can be generalized to irregular meshes.
引用
收藏
页码:141 / 160
页数:20
相关论文
共 50 条
  • [31] Stationary convection-diffusion equation in an infinite cylinder
    Pettersson, Irina
    Piatnitski, Andrey
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (07) : 4456 - 4487
  • [32] Bicompact Schemes for the Multidimensional Convection-Diffusion Equation
    Bragin, M. D.
    Rogov, B., V
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (04) : 607 - 624
  • [33] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    ZHAO Ming-deng
    [J]. Journal of Hydrodynamics, 2008, (01) : 47 - 53
  • [34] HOMOGENIZATION OF CONVECTION-DIFFUSION EQUATION IN INFINITE CYLINDER
    Pankratova, Iryna
    Piatnitski, Andrey
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2011, 6 (01) : 111 - 126
  • [35] An exponent difference scheme for the convection-diffusion equation
    Zheng, Wen-jun
    Zong, Er-jie
    Chen, Yan
    [J]. Advances in Matrix Theory and Applications, 2006, : 467 - 469
  • [36] A block circulant preconditioner for the convection-diffusion equation
    Karaa, S
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09): : 851 - 856
  • [37] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    Zhao Ming-deng
    Li Tai-ru
    Huai Wen-xin
    Li Liang-liang
    [J]. JOURNAL OF HYDRODYNAMICS, 2008, 20 (01) : 47 - 53
  • [38] Finite Proximate Method for Convection-Diffusion Equation
    Ming-deng Zhao
    Tai-ru Li
    Wen-xin Huai
    Liang-liang Li
    [J]. Journal of Hydrodynamics, 2008, 20 : 47 - 53
  • [39] On the finite difference approximation to the convection-diffusion equation
    Salkuyeh, Davod Khojasteh
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (01) : 79 - 86
  • [40] ADI AS A PRECONDITIONING FOR SOLVING THE CONVECTION-DIFFUSION EQUATION
    CHIN, RCY
    MANTEUFFEL, TA
    DEPILLIS, J
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1984, 5 (02): : 281 - 299