YANG-MILLS THEORY AND NONLOCAL REGULARIZATION

被引:2
|
作者
MOFFAT, JW
ROBBINS, SM
机构
关键词
D O I
10.1142/S0217732391001706
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The lowest order diagrams required to guarantee decoupling and gauge invariance in non-local regularized, non-A belian gauge theory are derived.
引用
收藏
页码:1581 / 1587
页数:7
相关论文
共 50 条
  • [1] GEOMETRIC REGULARIZATION OF YANG-MILLS THEORY
    ASOREY, M
    FALCETO, F
    [J]. PHYSICS LETTERS B, 1988, 206 (03) : 485 - 490
  • [2] OPERATOR REGULARIZATION AND MASSIVE YANG-MILLS THEORY
    CULUMOVIC, L
    MCKEON, DGC
    SHERRY, TN
    [J]. CANADIAN JOURNAL OF PHYSICS, 1990, 68 (10) : 1149 - 1156
  • [3] NONLOCAL YANG-MILLS
    KLEPPE, G
    WOODARD, RP
    [J]. NUCLEAR PHYSICS B, 1992, 388 (01) : 81 - 112
  • [4] Path integral regularization of pure Yang-Mills theory
    Jacquot, J. L.
    [J]. PHYSICAL REVIEW D, 2009, 80 (02):
  • [5] EMBEDDING YANG-MILLS THEORY INTO UNIVERSAL YANG-MILLS THEORY
    RAJEEV, SG
    [J]. PHYSICAL REVIEW D, 1991, 44 (06): : 1836 - 1841
  • [6] Operator cutoff regularization and renormalization group in Yang-Mills theory
    Liao, SB
    [J]. PHYSICAL REVIEW D, 1997, 56 (08) : 5008 - 5033
  • [7] Nonlocal two-dimensional Yang-Mills and generalized Yang-Mills theories
    Saaidi, K
    Khorrami, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30): : 4749 - 4759
  • [8] Infrared regularization of Yang-Mills theories
    Blasi, A
    Maggiore, N
    [J]. MODERN PHYSICS LETTERS A, 1996, 11 (20) : 1665 - 1673
  • [9] Topological Yang-Mills cohomology in pure Yang-Mills theory
    Accardi, A
    Belli, A
    Martellini, M
    Zeni, M
    [J]. PHYSICS LETTERS B, 1998, 431 (1-2) : 127 - 134
  • [10] Local gauge-invariant infrared regularization of Yang-Mills theory
    Slavnov, A. A.
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 154 (02) : 178 - 183