Influence of light intensity on hydrogen production by Rhodobacter sphaeroides from swine manure wastewater

被引:0
|
作者
Zhang Quanguo [1 ]
Zhou Ruyan [1 ]
Zhang Junhe [1 ]
Yang Qunfa [1 ]
机构
[1] Henan Agr Univ, Coll Mech & Elect Engn, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
light intensity; swine manure wastewater; photosynthetic bacteria; hydrogen production;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, the effects of light intensity on the hydrogen production of Rhodobacter sphaeroides 1.1737 using swine manure wastewater as substrate were investigated. The results show that the increase in light intensity increases both hydrogen production rate and total hydrogen evolved by Rhodobacter sphaeroides, and the activity of Rhodobacter sphaeroides is getting stronger. The rate of hydrogen production increases highly when light intensity is above 1000 lux than lower, and the activity of bacteria were improved drastically. As to 1200 lux, 1600 lux and 2000 lux, the increase of hydrogen production rate is not significant. The rate of hydrogen production reached maximum at approximately 1600 lux. These indicate that the influence on activity of hydrogen production of the bacteria will decline when light intensity increases to a certain degree, the effect of light intensity on rate and the amount of hydrogen production decreases gradually and further increase in light intensity does not have any effect while light intensity reaches a certain value.
引用
收藏
页码:382 / 388
页数:7
相关论文
共 50 条
  • [1] Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels
    Zhu, HG
    Suzuki, T
    Tsygankov, AA
    Asada, Y
    Miyake, J
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1999, 24 (04) : 305 - 310
  • [2] Hydrogen production from tofu wastewater by Rhodobacter sphaeroides and Clostridium butyricum in rest culture
    Zhu, HG
    Miyake, J
    Asada, Y
    RECYCLING THE RESOURCE: PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON ECOLOGICAL ENGINEERING FOR WASTEWATER TREATMENT, 1996, 5-6 : 443 - 446
  • [3] Green hydrogen production by Rhodobacter sphaeroides
    Akroum-Amrouche, Dahbia
    Akroum, Hamza
    Lounici, Hakim
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (01) : 2862 - 2880
  • [4] Hydrogen production by different strains of Rhodobacter sphaeroides
    Gündüz, U
    Türkarslan, S
    Yücel, M
    Türker, L
    Eroglu, L
    HYDROGEN ENERGY PROGRESS XIII, VOLS 1 AND 2, PROCEEDINGS, 2000, : 434 - 439
  • [5] Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides
    Koku, H
    Eroglu, I
    Gündüz, U
    Yücel, M
    Türker, L
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2002, 27 (11-12) : 1315 - 1329
  • [6] Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides OU 001
    Yetis, M
    Gündüz, U
    Eroglu, I
    Yücel, M
    Türker, L
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (11) : 1035 - 1041
  • [7] Optimization of photosynthetic hydrogen production from acetate by Rhodobacter sphaeroides RV
    Han, Hongliang
    Jia, Qibo
    Liu, Biqian
    Yang, Haijun
    Shen, Jianquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (29) : 12886 - 12890
  • [8] Strong pH dependence of hydrogen production from glucose by Rhodobacter sphaeroides
    Hu, Jun
    Yang, Honghui
    Wang, Xueqing
    Cao, Wen
    Guo, Liejin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (16) : 9451 - 9458
  • [9] Efficient hydrogen production from acetate through isolated Rhodobacter sphaeroides
    Kobayashi, Jyumpei
    Yoshimune, Kazuaki
    Komoriya, Tomoe
    Kohno, Hideki
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2011, 112 (06) : 602 - 605
  • [10] Fermentative hydrogen production from acetate using Rhodobacter sphaeroides RV
    Han, Hongliang
    Jia, Qibo
    Liu, Biqian
    Yang, Haijun
    Shen, Jianquan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (25) : 10773 - 10778