A Berry-Esseen Inequality without Higher Order Moments

被引:0
|
作者
Wang, Ningning [1 ]
Ahmad, Ibrahim A. [2 ]
机构
[1] Jackson State Univ, Dept Math & Stat Sci, Jackson, MS 39217 USA
[2] Oklahoma State Univ, Dept Stat, Stillwater, OK 74078 USA
关键词
Berry-Esseen inequality; Central limit theorem; Convergence rates;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note, a generalized form of the celebrated Berry-Esseen inequality is developed assuming only second-order moments to exist in the case of independent but not identically distributed random variables. The result generalizes and unifies many well known and highly used forms of the Berry-Esseen inequality.
引用
收藏
页码:180 / 187
页数:8
相关论文
共 50 条
  • [1] REVERSING THE BERRY-ESSEEN INEQUALITY
    HALL, P
    BARBOUR, AD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 90 (01) : 107 - 110
  • [2] A SHARPENING OF INEQUALITY OF BERRY-ESSEEN
    ZOLOTAREV, VM
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 8 (04): : 332 - +
  • [3] A CONDITIONAL BERRY-ESSEEN INEQUALITY
    Klein, Thierry
    Lagnoux, Agnes
    Petit, Pierre
    JOURNAL OF APPLIED PROBABILITY, 2019, 56 (01) : 76 - 90
  • [4] Higher dimensional quasi-power theorem and Berry-Esseen inequality
    Heuberger, Clemens
    Kropf, Sara
    MONATSHEFTE FUR MATHEMATIK, 2018, 187 (02): : 293 - 314
  • [5] Berry-Esseen Inequality for Unbounded Exchangeable Pairs
    Chen, Yanchu
    Shao, Qi-Man
    PROBABILITY APPROXIMATIONS AND BEYOND, 2012, 205 : 13 - 30
  • [7] BERRY-ESSEEN BOUNDS FOR (ABSOLUTE) MOMENTS OF DOMINATED MEASURES
    LANDERS, D
    ROGGE, L
    JOURNAL OF APPROXIMATION THEORY, 1988, 54 (03) : 250 - 259
  • [8] Berry-Esseen inequality for linear processes in Hilbert spaces
    Bosq, D
    STATISTICS & PROBABILITY LETTERS, 2003, 63 (03) : 243 - 247
  • [9] ON THE UPPER BOUND FOR THE ABSOLUTE CONSTANT IN THE BERRY-ESSEEN INEQUALITY
    Korolev, V. Yu.
    Shevtsova, I. G.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2010, 54 (04) : 638 - 658
  • [10] A Berry-Esséen Inequality without Higher Order Moments
    Wang N.
    Ahmad I.A.
    Sankhya A, 2016, 78 (2): : 180 - 187