SOME IDENTITIES FOR THE RIEMANN ZETA-FUNCTION II

被引:0
|
作者
Ivic, Aleksandar [1 ,2 ]
机构
[1] Univ Beogradu, Katedra Matemat RGF, Dusina 7, Beograd 11000, Serbia
[2] Univ Beogradu, Katedra Matemat RGF, Beograd 11000, Montenegro
来源
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS | 2005年 / 20卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Several identities for the Riemann zeta-function zeta(s) are proved. For example, if (sic)(1) (x) := {x} = x - [x], (sic)(n)(x) := integral(+infinity)(0){u} (sic)(n -1) (x/u) du/u (n >= 2), then zeta(n) (s)/(-s)(n) = integral(+infinity)(0) (sic)n(x)(x-1-s) dx (s = sigma + it, 0 < sigma < 1) and 1/2 pi integral(+infinity)(-infinity) vertical bar zeta(sigma + it)vertical bar(2n) / (sigma(2) + it)(n) dt = integral(+infinity)(0) (sic)(2)(n)(x)x(-1-s-2 sigma) dx (0 < sigma < 1).
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条