A NETWORK THERMODYNAMIC METHOD FOR NUMERICAL-SOLUTION OF THE NERNST-PLANCK AND POISSON EQUATION SYSTEM WITH APPLICATION TO IONIC TRANSPORT THROUGH MEMBRANES

被引:6
|
作者
HORNO, J [1 ]
GONZALEZCABALLERO, F [1 ]
GONZALEZFERNANDEZ, CF [1 ]
机构
[1] UNIV GRANADA,FAC SCI,DEPT APPL PHYS,E-18071 GRANADA,SPAIN
关键词
ionic transport; Network thermodynamics;
D O I
10.1007/BF00258379
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Simple techniques of network thermodynamics are used to obtain the numerical solution of the Nernst-Planck and Poisson equation system. A network model for a particular physical situation, namely ionic transport through a thin membrane with simultaneous diffusion, convection and electric current, is proposed. Concentration and electric field profiles across the membrane, as well as diffusion potential, have been simulated using the electric circuit simulation program, SPICE. The method is quite general and extremely efficient, permitting treatments of multi-ion systems whatever the boundary and experimental conditions may be. © 1990 Springer-Verlag.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 50 条
  • [1] NUMERICAL-SOLUTION OF EXTENDED NERNST-PLANCK EQUATIONS FOR IONIC FLOWS IN THIN MEMBRANES
    SIPILA, A
    EKMAN, A
    KONTTURI, K
    [J]. FINNISH CHEMICAL LETTERS, 1979, (04): : 97 - 102
  • [2] A VARIATIONAL METHOD FOR THE NUMERICAL-SOLUTION OF NERNST-PLANCK EQUATIONS FOR IONIC FLOWS IN THIN POROUS MEMBRANES
    KONTTURI, K
    SIPILA, AH
    [J]. FINNISH CHEMICAL LETTERS, 1983, (1-2): : 1 - 3
  • [3] APPLICATION OF THE NERNST-PLANCK EQUATION TO THE MODEL OF SUBSTANCE TRANSPORT THROUGH MEMBRANES
    SCHLEIFF, M
    MATSCHINER, H
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-LEIPZIG, 1985, 266 (03): : 541 - 552
  • [4] A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores
    Cervera, J
    Schiedt, B
    Ramírez, P
    [J]. EUROPHYSICS LETTERS, 2005, 71 (01): : 35 - 41
  • [5] NUMERICAL-SOLUTIONS OF THE NERNST-PLANCK AND POISSON SYSTEM OF EQUATIONS FOR ELECTRODIFFUSION
    RIVEROS, OJ
    CROXTON, TL
    ARMSTRONG, WM
    [J]. BIOPHYSICAL JOURNAL, 1988, 53 (02) : A402 - A402
  • [6] Numerical solution of nonstationary problems for a system of nernst-planck equations
    Vabishchevich P.N.
    Iliev O.P.
    [J]. Mathematical Models and Computer Simulations, 2013, 5 (3) : 229 - 243
  • [7] Influence of the convective term in the Nernst-Planck equation on properties of ion transport through a layer of solution or membrane
    Nikonenko, V. V.
    Lebedev, K. A.
    Suleimanov, S. S.
    [J]. RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2009, 45 (02) : 160 - 169
  • [8] Influence of the convective term in the Nernst-Planck equation on properties of ion transport through a layer of solution or membrane
    V. V. Nikonenko
    K. A. Lebedev
    S. S. Suleimanov
    [J]. Russian Journal of Electrochemistry, 2009, 45 : 160 - 169
  • [9] Numerical solution of the coupled Nernst-Planck and poisson equations for ion-selective membrane potentials
    Lingenfelter, P
    Sokalski, T
    Lewenstam, A
    [J]. MEMBRANES-PREPARATION, PROPERTIES AND APPLICATIONS, 2003, 752 : 193 - 198
  • [10] IONIC TRANSPORT AND SPACE-CHARGE DENSITY IN ELECTROLYTIC SOLUTIONS AS DESCRIBED BY NERNST-PLANCK AND POISSON EQUATIONS
    MAFE, S
    PELLICER, J
    AGUILELLA, VM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (22): : 6045 - 6050