Forecasting of carbon emissions prices by the adaptive neuro-fuzzy inference system

被引:0
|
作者
Atsalakis, G. [1 ]
Frantzis, D. [1 ]
Zopounidis, C. [1 ,2 ]
机构
[1] Tech Univ Crete, Financial Engn Lab, Univ Campus, Khania 73100, Greece
[2] Audencia Nantes Sch Management, F-44312 Nantes 3, France
关键词
artificial intelligence; computational intelligence; ANFIS forecasting; carbon emission forecasting; neuro-fuzzy forecasting;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
The need for accurate forecasts has increased in recent years but there has as yet been limited research on carbon emissions price trends. This study uses the adaptive neuro-fuzzy inference system (ANFIS) model to forecast the price trends of carbon emissions: ANFIS is a hybrid system consisting of neural networks and fuzzy logic. It uses a combination of the least-squares method and the back-propagation gradient descent method to estimate the optimal carbon price forecast parameters. Although the system is well known, it has been modified in order to best process the carbon emissions data sets. We used daily data sets covering the period from October 14, 2009 to October 29, 2013, using 1074 observations to train and evaluate the model. The results of the simulation and experimental investigations carried out in the laboratory showed that the model is suitable for forecasting carbon emissions price trends. A further evaluation compared the returns from trading actions, according to the signal of the forecasted system, with the buy-and-hold strategy.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 50 条
  • [1] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Bacanli, Ulker Guner
    Firat, Mahmut
    Dikbas, Fatih
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2009, 23 (08) : 1143 - 1154
  • [2] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    [J]. Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [3] Forecasting Copper Prices Using Hybrid Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Alameer, Zakaria
    Abd Elaziz, Mohamed
    Ewees, Ahmed A.
    Ye, Haiwang
    Zhang Jianhua
    [J]. NATURAL RESOURCES RESEARCH, 2019, 28 (04) : 1385 - 1401
  • [4] Forecasting Copper Prices Using Hybrid Adaptive Neuro-Fuzzy Inference System and Genetic Algorithms
    Zakaria Alameer
    Mohamed Abd Elaziz
    Ahmed A. Ewees
    Haiwang Ye
    Zhang Jianhua
    [J]. Natural Resources Research, 2019, 28 : 1385 - 1401
  • [5] FORECASTING THE RAINFALL DATA BY ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
    Yarar, Alpaslan
    Onucyildiz, Mustafa
    Sevimli, M. Faik
    [J]. SGEM 2009: 9TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE, VOL II, CONFERENCE PROCEEDING: MODERN MANAGEMENT OF MINE PRODUCING, GEOLOGY AND ENVIRONMENTAL PROTECTION, 2009, : 191 - +
  • [6] Adaptive Neuro-fuzzy Inference System on Downstream Water Level Forecasting
    Wang, An-Pei
    Liao, Heng-Yi
    Chang, Te-Hsing
    [J]. FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 3, PROCEEDINGS, 2008, : 503 - 507
  • [7] Missing wind data forecasting with adaptive neuro-fuzzy inference system
    Fatih O. Hocaoglu
    Yusuf Oysal
    Mehmet Kurban
    [J]. Neural Computing and Applications, 2009, 18 : 207 - 212
  • [8] Missing wind data forecasting with adaptive neuro-fuzzy inference system
    Hocaoglu, Fatih O.
    Oysal, Yusuf
    Kurban, Mehmet
    [J]. NEURAL COMPUTING & APPLICATIONS, 2009, 18 (03): : 207 - 212
  • [9] Monthly river flow forecasting by an adaptive neuro-fuzzy inference system
    Firat, Mahmut
    Turan, M. Erkan
    [J]. WATER AND ENVIRONMENT JOURNAL, 2010, 24 (02) : 116 - 125
  • [10] Adaptive neuro-fuzzy inference system for forecasting rubber milk production
    Rahmat, R. F.
    Nurmawan
    Sembiring, S.
    Syahputra, M. F.
    Fadli
    [J]. 10TH INTERNATIONAL CONFERENCE NUMERICAL ANALYSIS IN ENGINEERING, 2018, 308