AUXILIARY PRINCIPLE TECHNIQUE FOR THE GENERAL LAX-MILGRAM LEMMA

被引:1
|
作者
Rassias, Themistocles M. [1 ]
Noor, Muhammad Aslam [2 ]
Noor, Khalida Inayat [2 ]
机构
[1] Natl Tech Univ Athens, Math Dept, Athens, Greece
[2] COMSATS Univ Islamabad, Math Dept, Islamabad, Pakistan
关键词
Absolute value equation; Lax-Milgram Lemma; Auxiliary principle; Iterative method; Convergence;
D O I
10.23952/jnfa.2018.34
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the auxiliary principle technique to discuss the existence of a solution of the general Lax-Milgram lemma. This technique is also used to suggest some new iterative methods. Convergence analysis of the proposed methods is considered under some mild conditions. Ideas and techniques of this paper may stimulate further research in this research filed.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] CONCERNING SOME VERSION OF THE LAX-MILGRAM LEMMA IN NORMED SPACES
    MOSZYNSKI, K
    STUDIA MATHEMATICA, 1980, 68 (01) : 67 - 78
  • [2] LAX-MILGRAM THEOREM
    CAC, NP
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 268 (11): : 593 - &
  • [3] A GENERALIZED LAX-MILGRAM THEOREM
    LANDESMAN, EM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 19 (02) : 339 - +
  • [4] Generalizations of the Lax-Milgram theorem
    Drivaliaris, Dimosthenis
    Yannakakis, Nikos
    BOUNDARY VALUE PROBLEMS, 2007,
  • [5] Generalizations of the Lax-Milgram Theorem
    Dimosthenis Drivaliaris
    Nikos Yannakakis
    Boundary Value Problems, 2007
  • [6] Lax-Milgram定理的推广
    李永军
    臧子龙
    甘肃高师学报, 2005, (05) : 7 - 8
  • [7] A Coq Formal Proof of the Lax-Milgram Theorem
    Boldo, Sylvie
    Clement, Francois
    Faissole, Florian
    Martin, Vincent
    Mayero, Micaela
    PROCEEDINGS OF THE 6TH ACM SIGPLAN CONFERENCE ON CERTIFIED PROGRAMS AND PROOFS, CPP'17, 2017, : 79 - 89
  • [8] AN ALGEBRAIC EXTENSION OF THE LAX-MILGRAM THEOREM
    OBI, GMM
    PACIFIC JOURNAL OF MATHEMATICS, 1980, 86 (02) : 543 - 552
  • [9] Extensions of the Lax-Milgram theorem to HilbertC* -modules
    Eskandari, Rasoul
    Frank, Michael
    Manuilov, Vladimir M.
    Moslehian, Mohammad Sal
    POSITIVITY, 2020, 24 (04) : 1169 - 1180
  • [10] Functional inequalities motivated by the Lax-Milgram theorem
    Fechner, Wlodzimierz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) : 411 - 414