RETRACTION SPACES AND THE HOMOTOPY METRIC

被引:5
|
作者
Boxer, Laurence [1 ]
机构
[1] Muhlenberg Coll, Dept Math, Allentown, PA 18104 USA
关键词
Retraction; ANR; FANR; deformation retraction; homotopy metric; fundamental retraction; sup-metric; Hausdorff metric; movable; finite-dimensional compactum; homotopy domination;
D O I
10.1016/0166-8641(80)90013-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a finite-dimensional compactum. Let R(X) and N(X) be the spaces of retractions and non-deformation retractions of X, respectively, with the compact-open (=sup-metric) topology. Let 2(h)(X) he the space of non-empty compact ANR subsets of X with topology induced by the homotopy metric. Let R(h)(X) be the subspace of 2(h)(X) consisting of the ANR's in X that are retracts of X. We show that N(S(m)) is simply-connected for m > 1. We show that if X is an ANR and A(0) is an element of R(h)(X), then lim(i ->infinity) A(1) = A(0) in 2(h)(X) and only if for every retraction r(0) of X onto A(0) there are, for almost all i, retractions r(i) of X onto A(i) such that lim(i ->infinity) r(i) = r(0) in R(X). We show that if X is an ANR, then the local connectedness of R(X) implies that of R(h)(X). We prove that R(M) is locally connected if M is a closed surface. We give examples to show how some of our results weaken when X is not assumed to be an ANR.
引用
收藏
页码:17 / 29
页数:13
相关论文
共 50 条
  • [1] Persistent homotopy groups of metric spaces
    Memoli, Facundo
    Zhou, Ling
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2024,
  • [2] Coarse homotopy on metric spaces and their corona
    Hartmann, Elisa
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2021, 62 (02): : 243 - 257
  • [3] On the homotopy groups of separable metric spaces
    Ghane, F. H.
    Passandideh, Hadi
    Hamed, Z.
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (13) : 1607 - 1614
  • [4] A natural pseudometric on homotopy groups of metric spaces
    Brazas, Jeremy
    Fabel, Paul
    GLASGOW MATHEMATICAL JOURNAL, 2024, 66 (01) : 162 - 174
  • [5] AREA MINIMIZING SURFACES IN HOMOTOPY CLASSES IN METRIC SPACES
    Soultanis, Elefterios
    Wenger, Stefan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (07) : 4711 - 4739
  • [6] Discrete homotopy theory and critical values of metric spaces
    Conant, Jim
    Curnutte, Victoria
    Jones, Corey
    Plaut, Conrad
    Pueschel, Kristen
    Lusby, Maria
    Wilkins, Jay
    FUNDAMENTA MATHEMATICAE, 2014, 227 (02) : 97 - 128
  • [7] FREE DEFORMATION RETRACTION IN INJECTIVE METRIC SPACES
    麦结华
    唐云
    Chinese Annals of Mathematics, 1989, (02) : 221 - 226
  • [8] Causal Order Complex and Magnitude Homotopy Type of Metric Spaces
    Tajima, Yu
    Yoshinaga, Masahiko
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (04) : 3176 - 3222
  • [9] Fixed points on ordered metric spaces with applications in homotopy theory
    Butt, Asma Rashid
    Beg, Ismat
    Iftikhar, Aqsa
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (01)
  • [10] Fixed point results and an application to homotopy in modular metric spaces
    Ege, Meltem Erden
    Alaca, Cihangir
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (06): : 900 - 908