IMPROVING BIO-OIL QUALITY THROUGH CO-PYROLYSIS OF CORN COBS AND POLYPROPYLENE IN A STIRRED TANK REACTOR

被引:11
|
作者
Supramono, Dijan [1 ]
Jonathan [1 ]
Haqqyana [1 ]
Setiadi [1 ]
Nasikin, Mohammad [1 ]
机构
[1] Univ Indonesia, Fac Engn, Dept Chem Engn, Kampus UI Depok, Depok 16424, Indonesia
关键词
Co-pyrolysis; Corn cobs; Polypropylene; Stirred tank reactor; Synergistic effect;
D O I
10.14716/ijtech.v7i8.6884
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bio-oil produced by biomass pyrolysis contains high oxygenates, namely, carboxylic acids, alcohols, and ketones resulting in low calorific fuel, and therefore bio-oil requires upgrading to sequester these oxygenates. By conducting the co-pyrolysis of biomass and plastic feed blend, the donation of hydrogen by plastic free radicals to the oxygen of biomass free radicals may sufficiently reduce oxygenate compounds in the bio-oil and increase its yield. Therefore, the synergetic effects are functional. Currently, co-pyrolysis reactors have high aspect ratios (ratio of height to diameter) of 4 or more and small diameters (maximum 40 mm), in which the heat transfer from the furnace to the feed blend is immaterial even though the plastic material has low thermal conductivity. However, in large-scale reactors, such a design restricts the bio-oil's capacity due to the heat transfer constraint. To resolve the latter and to improve bio-oil quality, in the present work, the co-pyrolysis of corn cobs and polypropylene (PP) is conducted in a stirred-tank reactor with a low aspect ratio (2). PP composition in the feed blend was varied from 0-100% weight with a 12.5% weight interval, heating rate of 5 degrees C/min, and final temperature of 500 degrees C. The results show that by increasing the PP composition in the feed blend from 37.5% to 87.5%, the bio-oil yield increased from 25.8% to 67.2% feed weight. An analysis of bio-oil quality shows that there was a favorably abrupt increase of non-oxygenate composition in the bio-oil from less than 5% to more than 70% as the PP composition in the feed blend was increased from 37.5% to 50% and more.
引用
收藏
页码:1381 / 1391
页数:11
相关论文
共 50 条
  • [1] Phase separation of bio-oil produced by co-pyrolysis of corn cobs and polypropylene
    Supramono, D.
    Julianto
    Haqqyana
    Setiadi, H.
    Nasikin, M.
    2017 INTERNATIONAL CONFERENCE ON NEW ENERGY AND FUTURE ENERGY SYSTEM (NEFES 2017), 2017, 93
  • [2] Hydrogenation of non-polar Fraction of Bio-oil from Co-pyrolysis of Corn Cobs and Polypropylene for Bio-diesel Production
    Supramono, Dijan
    Edgar, Justin
    Setiadi
    Nasikin, Mohammad
    3RD INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE SUSTAINABLE DEVELOPMENT OF TROPICAL RENEWABLE ENERGY (I-TREC 2018), 2018, 67
  • [3] Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production
    Suriapparao, Dadi V.
    Boruah, Bhanupriya
    Raja, Dharavath
    Vinu, R.
    FUEL PROCESSING TECHNOLOGY, 2018, 175 : 64 - 75
  • [4] Co-pyrolysis of Enteromorpha prolifera and the Ficus microcarpa l for improving bio-oil quality in fixed-bed reactor
    Gui, Zhi-Kang
    Li, Bao-Xia
    Wang, Meng-Fei
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11836 - 11849
  • [5] Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres
    Alvarez, Jon
    Amutio, Maider
    Lopez, Gartzen
    Santamaria, Laura
    Bilbao, Javier
    Olazar, Martin
    WASTE MANAGEMENT, 2019, 85 : 385 - 395
  • [6] Influence of graphite/alumina on co-pyrolysis of Chlorella vulgaris and polypropylene for producing bio-oil
    Chen, Chunxiang
    Zhao, Jian
    Wei, Yixue
    Huang, Xiaodong
    Lu, Wei
    Fan, Dianzhao
    Bi, Yingxin
    Qiu, Hongfu
    ENERGY, 2023, 265
  • [7] Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating
    Duan, Dengle
    Wang, Yunpu
    Dai, Leilei
    Ruan, Roger
    Zhao, Yunfeng
    Fan, Liangliang
    Tayier, Maimaitiaili
    Liu, Yuhuan
    BIORESOURCE TECHNOLOGY, 2017, 241 : 207 - 213
  • [8] Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis
    Mullen, Charles A.
    Boateng, Akwasi A.
    Goldberg, Neil M.
    Lima, Isabel M.
    Laird, David A.
    Hicks, Kevin B.
    BIOMASS & BIOENERGY, 2010, 34 (01): : 67 - 74
  • [9] Biomass pyrolysis polygeneration with bio-oil recycling: Co-pyrolysis of heavy bio-oil and pine wood leached with light bio-oil for product upgradation
    Cen, Kehui
    Zhuang, Xiaozhuang
    Gan, Ziyu
    Zhang, Hong
    Chen, Dengyu
    FUEL, 2023, 335
  • [10] Bio-oil upgraded by catalytic co-pyrolysis of sawdust with tyre
    Cao, Qing
    Zhou, Cunming
    Zhong, Cungui
    Jin, Li'e
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2014, 8 (02) : 235 - 250