Exact solutions for time-fractional Fokker-Planck-Kolmogorov equation of Geometric Brownian motion via Lie point symmetries

被引:6
|
作者
Naderifard, Azadeh [1 ]
Dastranj, Elham [1 ]
Hejazi, S. Reza [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Semnan, Iran
关键词
Fokker-Planck equation; time-fractional PDE; geometric Brownian motion; lie symmetry;
D O I
10.1142/S2424786318500093
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, the transition joint probability density function of the solution of geometric Brownian motion (GBM) equation is obtained via Lie group theory of differential equations (DEs). Lie symmetry analysis is applied to find new solutions for time-fractional Fokker-Planck-Kolmogorov equation of GBM. This analysis classifies the forms of the solutions for the equation by the similarity variables arising from the symmetry operators. Finally, an analytic method called invariant subspace method is applied in order to find another exact solution.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Numerical approximations for time-fractional Fokker-Planck-Kolmogorov equation of geometric Brownian motion
    Hejazi, S. Reza
    Habibi, Noora
    Dastranj, Elham
    Lashkarian, Elham
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2020, 23 (07) : 1387 - 1403
  • [2] Exact solutions for Fokker-Plank equation of geometric Brownian motion with lie point symmetries
    Dastranj, Elham
    Hejazi, Seyed Reza
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (03): : 372 - 379
  • [3] New exact solutions to the Fokker-Planck-Kolmogorov equation
    Unal, Gazanfer
    Sun, Jian-Qiao
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (10) : 2051 - 2059
  • [4] FOKKER-PLANCK-KOLMOGOROV EQUATIONS ASSOCIATED WITH TIME-CHANGED FRACTIONAL BROWNIAN MOTION
    Hahn, Marjorie G.
    Kobayashi, Kei
    Umarov, Sabir
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (02) : 691 - 705
  • [5] On uniqueness of probability solutions of the Fokker-Planck-Kolmogorov equation
    Bogachev, V. I.
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    [J]. SBORNIK MATHEMATICS, 2021, 212 (06) : 745 - 781
  • [6] On Positive and Probability Solutions to the Stationary Fokker-Planck-Kolmogorov Equation
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2012, 85 (03) : 350 - 354
  • [7] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    O. A. Manita
    M. S. Romanov
    S. V. Shaposhnikov
    [J]. Doklady Mathematics, 2015, 91 : 142 - 146
  • [8] On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation
    V. I. Bogachev
    M. Röckner
    S. V. Shaposhnikov
    [J]. Doklady Mathematics, 2012, 85 : 350 - 354
  • [9] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2015, 91 (02) : 142 - 146
  • [10] On Nonuniqueness of Probability Solutions to the Cauchy Problem for the Fokker-Planck-Kolmogorov Equation
    Bogachev, V. I.
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    [J]. DOKLADY MATHEMATICS, 2021, 103 (03) : 108 - 112