CONFIGURATION-SPACE APPROACH TO THE FCC TO HCP STRUCTURAL TRANSITION

被引:15
|
作者
FOLKINS, I
WALKER, MB
机构
[1] Department of Physics, University of Toronto, Toronto
关键词
D O I
10.1103/PhysRevLett.65.127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Shoji-Nishiyama mechanism prescribes a way of continuously distorting an fcc into an hcp structure. We show that the atomic displacements of this deformation mechanism can be considered as the sum of a modulation and a strain. A transition path between these two structures can therefore be characterized by a parametrization of the modulation and strain amplitudes. The free energy as a function of these two amplitudes is shown to be highly constrained and, in particular, is invariant under a two-dimensional space group. © 1990 The American Physical Society.
引用
收藏
页码:127 / 130
页数:4
相关论文
共 50 条
  • [1] A configuration-space approach to controlling a rehabilitation arm exoskeleton
    Carignan, Craig
    Tang, Jonathan
    Roderick, Stephen
    Naylor, Michael
    [J]. 2007 IEEE 10TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, VOLS 1 AND 2, 2007, : 179 - +
  • [2] CONFIGURATION-SPACE APPROACH TO 4-PARTICLE PROBLEM
    ZICKENDRAHT, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (01) : 30 - +
  • [3] CONFIGURATION-SPACE APPROACH TO 3-PARTICLE SCATTERING
    ZICKENDRAHT, W
    [J]. PHYSICAL REVIEW, 1967, 159 (05): : 1448 - +
  • [4] CONFIGURATION-SPACE YAKUBOVSKY CALCULATIONS
    SCHELLINGERHOUT, NW
    SCHUT, JJ
    KOK, LP
    [J]. PHYSICAL REVIEW C, 1992, 46 (04): : 1192 - 1202
  • [5] ON A REPRESENTATION OF FRICTION IN CONFIGURATION-SPACE
    ERDMANN, M
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1994, 13 (03): : 240 - 271
  • [6] New approach for numerical solution of configuration-space Faddeev equations
    Departamento Fisica Teôrica, Universidadde Valencia, E-46.100 Burjassot, Spain
    不详
    不详
    [J]. Hyperfine Interact., 1 (391-399):
  • [7] Nuclear pairing within a configuration-space Monte Carlo approach
    Lingle, Mark
    Volya, Alexander
    [J]. PHYSICAL REVIEW C, 2015, 91 (06):
  • [9] New approach for numerical solution of configuration-space Faddeev equations
    Bernabeu, J
    Suslov, VM
    Strizh, TA
    Vinitsky, SI
    [J]. HYPERFINE INTERACTIONS, 1996, 102 : 391 - 399
  • [10] ON THE CONFIGURATION-SPACE OF GAUGE-THEORIES
    FUCHS, J
    SCHMIDT, MG
    SCHWEIGERT, C
    [J]. NUCLEAR PHYSICS B, 1994, 426 (01) : 107 - 128