THE CAUCHY-PROBLEM FOR ODD-ORDER QUASI-LINEAR EQUATIONS

被引:13
|
作者
FAMINSKII, AV
机构
来源
MATHEMATICS OF THE USSR-SBORNIK | 1991年 / 68卷 / 01期
关键词
D O I
10.1070/SM1991v068n01ABEH001932
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlocal Cauchy problem for multidimensional quasilinear evolution equations containing a linear differential operator L(t, x, D(x)) with leading derivatives of odd order is considered. The conditions on the nonlinear terms are chosen so that they are subordinate to the operator L. The Korteweg-de Vries equation is a special case of such equations. No smoothness conditions are imposed on the initial function u0(x) (u0(x) is-an-element-of L2(R(n))). Theorems on the existence, uniqueness, and continuous dependence on the initial data of generalized solutions are established.
引用
收藏
页码:31 / 59
页数:29
相关论文
共 50 条