QUADRATIC AND RELATED EXPONENTIAL SPLINES IN SHAPE PRESERVING INTERPOLATION

被引:8
|
作者
SCHMIDT, JW [1 ]
HESS, W [1 ]
机构
[1] TECH UNIV DRESDEN,DEPT MATH,DDR-8027 DRESDEN,GER DEM REP
关键词
COMPUTER PROGRAMMING - Algorithms;
D O I
10.1016/0377-0427(87)90005-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For quadratic and related exponential splines necessary and sufficient conditions are given under which the properties of convexity or monotonicity carry over from the data set to the interpolants. It turns out that for quadratic splines the problems of convex or monotone interpolation may be not solvable. However, when using the more general exponential splines, the shape is preserved if the parameters occurring now are chosen approximately. Furthermore, since convex or monotone spline interpolants are in general not uniquely determined, a strategy for selecting one of them is proposed.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 50 条
  • [1] SHAPE PRESERVING INTERPOLATION BY QUADRATIC SPLINES
    LAHTINEN, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 29 (01) : 15 - 24
  • [2] SHAPE-PRESERVING INTERPOLATION USING QUADRATIC X-SPLINES
    RAMACHANDRAN, MP
    [J]. APPLIED MATHEMATICS LETTERS, 1994, 7 (06) : 97 - 100
  • [3] CONVEXITY PRESERVING INTERPOLATION WITH EXPONENTIAL SPLINES
    HESS, W
    SCHMIDT, JW
    [J]. COMPUTING, 1986, 36 (04) : 335 - 342
  • [4] Approximation by shape preserving interpolation splines
    Kouibia, A
    Pasadas, M
    [J]. APPLIED NUMERICAL MATHEMATICS, 2001, 37 (03) : 271 - 288
  • [5] CONVEXITY PRESERVING INTERPOLATION WITH EXPONENTIAL SPLINES.
    Hess, W.
    Schmidt, J.W.
    [J]. Computing (Vienna/New York), 1986, 36 (04): : 335 - 342
  • [6] Spatial shape‐preserving interpolation using ν‐splines
    M.I. Karavelas
    P.D. Kaklis
    [J]. Numerical Algorithms, 2000, 23 : 217 - 250
  • [7] Shape-preserving interpolation by cubic splines
    Yu. S. Volkov
    V. V. Bogdanov
    V. L. Miroshnichenko
    V. T. Shevaldin
    [J]. Mathematical Notes, 2010, 88 : 798 - 805
  • [8] Shape-Preserving Interpolation by Cubic Splines
    Volkov, Yu. S.
    Bogdanov, V. V.
    Miroshnichenko, V. L.
    Shevaldin, V. T.
    [J]. MATHEMATICAL NOTES, 2010, 88 (5-6) : 798 - 805
  • [9] ON SHAPE PRESERVING QUADRATIC SPLINE INTERPOLATION
    SCHUMAKER, LL
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (04) : 854 - 864
  • [10] Spatial shape-preserving interpolation using ν-splines
    Karavelas, MI
    Kaklis, PD
    [J]. NUMERICAL ALGORITHMS, 2000, 23 (2-3) : 217 - 250