ANALYTIC CONJUGACY FOR SOME TORAL DIFFEOMORPHISMS

被引:0
|
作者
CASTRO, JA
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(t) be an analytic family of diffeomorphisms of the torus T-n, such that f(0) is a linear Anosov diffeomorphism, with reduced spectrum. We study the existence of a solution to the conjugacy equation f(t) o phi(t) = phi(t) o f(0) The case of dimension 2 has been studied in [4], [5], [8] and [9]. Our main result is a necessary and sufficient condition, related to the periodic points of f(t), which, when n = 2, reduce to [9].
引用
收藏
页码:221 / 224
页数:4
相关论文
共 50 条
  • [1] SOME RESULTS ON ANALYTIC ITERATION AND CONJUGACY
    MUCKENHOUPT, B
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (01) : 161 - &
  • [2] Block conjugacy of irreducible toral automorphisms
    Bakker, Lennard F.
    Rodrigues, Pedro Martins
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2019, 34 (02): : 244 - 258
  • [3] Topological conjugacy of circle diffeomorphisms
    Hu, J
    Sullivan, DP
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 173 - 186
  • [4] Breaking hyperbolicity for smooth symplectic toral diffeomorphisms
    L. Lerman
    [J]. Regular and Chaotic Dynamics, 2010, 15 : 194 - 209
  • [5] Breaking hyperbolicity for smooth symplectic toral diffeomorphisms
    Lerman, L.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2010, 15 (2-3): : 194 - 209
  • [6] Smooth conjugacy and renormalisation for diffeomorphisms of the circle
    Stark, Jaroslav
    [J]. NONLINEARITY, 1988, 1 (04) : 541 - 575
  • [7] CONJUGACY OF REAL DIFFEOMORPHISMS. A SURVEY
    O'Farrell, A. G.
    Roginskaya, M.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2011, 22 (01) : 1 - 40
  • [8] SMOOTH CONJUGACY OF CIRCLE DIFFEOMORPHISMS WITH BREAK
    Teplins'kyi, O. Yu.
    Khanin, K. M.
    [J]. NONLINEAR OSCILLATIONS, 2010, 13 (01): : 112 - 127
  • [9] Center foliation rigidity for partially hyperbolic toral diffeomorphisms
    Gogolev, Andrey
    Kalinin, Boris
    Sadovskaya, Victoria
    [J]. MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1579 - 1602
  • [10] Center foliation rigidity for partially hyperbolic toral diffeomorphisms
    Andrey Gogolev
    Boris Kalinin
    Victoria Sadovskaya
    [J]. Mathematische Annalen, 2023, 387 : 1579 - 1602