A SMOOTH CONDITIONAL QUANTILE ESTIMATOR AND RELATED APPLICATIONS OF CONDITIONAL EMPIRICAL PROCESSES

被引:19
|
作者
MEHRA, KL
RAO, MS
UPADRASTA, SP
机构
[1] The University of Alberta, Edmonton
基金
加拿大自然科学与工程研究理事会;
关键词
CONDITIONAL QUANTILE REGRESSION; CONDITIONAL QUANTILE PROCESS; WEAK CONVERGENCE; ESTIMATION OF CONDITIONAL FUNCTIONALS;
D O I
10.1016/0047-259X(91)90078-G
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {(Xi, Yi); i = 1,2,...} be a sequence of i.i.d. r.v.'s and denote by m(y | x0), -∞ < y < ∞, the conditional distribution function of Y given X = x0, -∞ < x0 < ∞. In this paper we propose and discuss certain smooth variants (based both on single as well as double kernel weights) of the standard conditional quantile estimator mn-1(λ | x0), 0 < λ < 1, of m-1(λ | x0), where mn(y | x0) is a (kernel) estimator of m(y | x0). The weak convergence of the corresponding conditional quantile process is also established. The same methods are used to study a new estimator of the conditional density and a "robust" estimator of the regression function. © 1991.
引用
收藏
页码:151 / 179
页数:29
相关论文
共 50 条