INVERSES OF SOME MATRICES DEVIATING SLIGHTLY FROM A SYMMETRIC, TRIDIAGONAL, TOEPLITZ FORM

被引:5
|
作者
MEEK, D
机构
关键词
D O I
10.1137/0717006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:39 / 43
页数:5
相关论文
共 40 条
  • [1] Inverses of tridiagonal Toeplitz and periodic matrices with applications to mechanics
    Wittenburg, J
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1998, 62 (04): : 575 - 587
  • [2] The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows
    Yunlan Wei
    Yanpeng Zheng
    Zhaolin Jiang
    Sugoog Shon
    Journal of Applied Mathematics and Computing, 2022, 68 : 623 - 636
  • [3] Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices
    Wei, Yunlan
    Jiang, Xiaoyu
    Jiang, Zhaolin
    Shon, Sugoog
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [4] Controlled approximation for the inverses of special tridiagonal Toeplitz and modified Toeplitz matrices
    C. Bruni
    S. Vergari
    CALCOLO, 2003, 40 : 149 - 161
  • [5] The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows
    Wei, Yunlan
    Zheng, Yanpeng
    Jiang, Zhaolin
    Shon, Sugoog
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) : 623 - 636
  • [6] Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices
    Yunlan Wei
    Xiaoyu Jiang
    Zhaolin Jiang
    Sugoog Shon
    Advances in Difference Equations, 2019
  • [7] ON THE FAST REDUCTION OF SYMMETRIC RATIONALLY GENERATED TOEPLITZ MATRICES TO TRIDIAGONAL FORM
    Frederix, K.
    Gemignani, L.
    Van Barel, M.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2009, 35 : 129 - 147
  • [8] Controlled approximation for the inverses of special tridiagonal Toeplitz and modified Toeplitz matrices
    Bruni, C
    Vergari, S
    CALCOLO, 2003, 40 (03) : 149 - 161
  • [9] On the fast reduction of symmetric rationally generated toeplitz matrices to tridiagonal form
    Frederix, K.
    Gemignani, L.
    Van Barel, M.
    Electronic Transactions on Numerical Analysis, 2009, 35 : 129 - 147
  • [10] O(n) working precision inverses for symmetric tridiagonal Toeplitz matrices with floating point calculations
    Radons, Manuel
    OPTIMIZATION LETTERS, 2018, 12 (02) : 425 - 434