COMBED HEDGEHOG KINK METRIC IN (2+1) DIMENSIONS

被引:6
|
作者
WILLIAMS, JG
机构
[1] Department of Mathematics and Computer Science, Brandon University, Brandon, R7A 6A9, Manitoba
关键词
D O I
10.1007/BF00772615
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A solution is presented for a rotating perfect fluid in (2+1)-dimensional spacetime. A complete metrical kink is seen to be present, provided that the boundary conditions are correctly formulated.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 50 条
  • [1] Rotating kink spacetime in 2+1 dimensions
    Williams, JG
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (01) : 27 - 33
  • [2] Rotating Kink Spacetime in 2+1 Dimensions
    J. G. Williams
    [J]. General Relativity and Gravitation, 1998, 30 : 27 - 33
  • [3] A topological metric in 2+1 dimensions
    Mazharimousavi, S. Habib
    Halilsoy, M.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2015, 75 (06):
  • [4] A topological metric in 2+1 dimensions
    S. Habib Mazharimousavi
    M. Halilsoy
    [J]. The European Physical Journal C, 2015, 75
  • [5] Global monopole metric in 2+1 dimensions
    Mazharimousavi, S. Habib
    Halilsoy, M.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (01)
  • [6] Effective description of the impact of inhomogeneities on the movement of the kink front in 2+1 dimensions
    Gatlik, Jacek
    Dobrowolski, Tomasz
    Kevrekidis, Panayotis G.
    [J]. PHYSICAL REVIEW E, 2024, 109 (02) : 024205
  • [7] Multiple kink solutions for M-component Burgers equations in (1+1)-dimensions and (2+1)-dimensions
    Wazwaz, Abdul-Majid
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (07) : 3564 - 3570
  • [8] Regularized conformal electrodynamics: Novel C metric in 2+1 dimensions
    Kubiznak, David
    Svitek, Otakar
    Tahamtan, Tayebeh
    [J]. PHYSICAL REVIEW D, 2024, 110 (06)
  • [9] GRAVITATION IN 2+1 DIMENSIONS
    CORNISH, NJ
    FRANKEL, NE
    [J]. PHYSICAL REVIEW D, 1991, 43 (08): : 2555 - 2565
  • [10] Radiation in (2+1)-dimensions
    Cataldo, Mauricio
    Garcia, Alberto A.
    [J]. PHYSICS LETTERS B, 2014, 734 : 58 - 63