A GRAPH-THEORETIC ENCODING OF LUCAS SEQUENCES

被引:0
|
作者
Alexander, James [1 ]
Hearding, Paul [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
来源
FIBONACCI QUARTERLY | 2015年 / 53卷 / 03期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some well-known results of Prodinger and Tichy are that the number of independent sets in the n -vertex path graph is Fn+2, and that the number of independent sets in the n -vertex cycle graph is L-n. We generalize these results by introducing new classes of graphs whose independent set structures encode the Lucas sequences of both the first and second kind. We then use this class of graphs to provide new combinatorial interpretations of the terms of Dickson polynomials of the first and second kind.
引用
收藏
页码:237 / 240
页数:4
相关论文
共 50 条
  • [1] A graph-theoretic approach for studying the convergence of fractal encoding algorithm
    Mukherjee, J
    Kumar, P
    Ghosh, SK
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (03) : 366 - 377
  • [2] Graph-theoretic scagnostics
    Wilkinson, L
    Anand, A
    Grossman, R
    [J]. INFOVIS 05: IEEE SYMPOSIUM ON INFORMATION VISUALIZATION, PROCEEDINGS, 2005, : 157 - 164
  • [3] A graph-theoretic approach to steganography
    Hetzl, S
    Mutzel, P
    [J]. COMMUNICATIONS AND MULTIMEDIA SECURITY, 2005, 3677 : 119 - 128
  • [4] A graph-theoretic approach to multitasking
    Alon, Noga
    Reichman, Daniel
    Shinkar, Igor
    Wagner, Tal
    Musslick, Sebastian
    Cohen, Jonathan D.
    Griffiths, Thomas L.
    Dey, Biswadip
    Ozcimder, Kayhan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [5] A graph-theoretic model for time
    Kainen, PC
    [J]. COMPUTING ANTICIPATORY SYSTEMS, 2001, 573 : 490 - 495
  • [6] THE LOGIC OF GRAPH-THEORETIC DUALITY
    MCKEE, TA
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (07): : 457 - 464
  • [7] A graph-theoretic perspective on centrality
    Borgatti, Stephen P.
    Everett, Martin G.
    [J]. SOCIAL NETWORKS, 2006, 28 (04) : 466 - 484
  • [8] COMPATIBILITY IN A GRAPH-THEORETIC SETTING
    JANOWITZ, MF
    STINEBRICKNER, R
    [J]. MATHEMATICAL SOCIAL SCIENCES, 1993, 25 (03) : 251 - 279
  • [9] Supervised graph-theoretic clustering
    Shi, RJ
    Shen, IF
    Yang, S
    [J]. PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 683 - 688
  • [10] A Graph-theoretic Account of Logics
    Sernadas, Amilcar
    Sernadas, Cristina
    Rasga, Joao
    Coniglio, Marcelo
    [J]. JOURNAL OF LOGIC AND COMPUTATION, 2009, 19 (06) : 1281 - 1320