LBI TESTS OF INDEPENDENCE IN BIVARIATE EXPONENTIAL-DISTRIBUTIONS

被引:1
|
作者
BILODEAU, M
KARIYA, T
机构
[1] UNIV CHICAGO,GRAD SCH BUSINESS,CHICAGO,IL 60637
[2] HITOTSUBASHI UNIV,INST ECON RES,KUNITACHI,TOKYO 186,JAPAN
关键词
BIVARIATE EXPONENTIAL DISTRIBUTION; LOCALLY BEST INVARIANT TEST; TEST OF INDEPENDENCE; PARAMETRIC FAMILIES OF GUMBEL (TYPE-I AND TYPE-II); FRANK; AND COOK AND JOHNSON;
D O I
10.1007/BF00773598
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The locally best invariant test for the hypothesis of independence in bivariate distributions with exponentially distributed marginals is derived. The model consists of a family of bivariate exponential distributions with probability density function f(theta)(x1, x2; lambda1, lambda2) = lambda1lambda2 exp[-(lambda1x1 + lambda2x2)]g(lambda1x1, lambda2x2; 0) with unknown scale parameter lambda(j) (j = 1, 2) and association parameter theta which includes the independence situation. The locally best invariant (LBI) test is derived and the asymptotic null and nonnull distributions are also derived under some regularity conditions. The results are applied to the Gumbel (1960, J. Amer. Statist. Assoc., 55, 698-707), Frank (1979, Aequationes Math., 19, 194-226), and Cook and Johnson (1981, J. Roy. Statist. Soc. Ser. B, 43, 210-218) families.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 50 条