LOGARITHMIC TRIVIALITY OF SCALAR QUANTUM ELECTRODYNAMICS

被引:9
|
作者
BAIG, M
FORT, H
KOGUT, JB
KIM, S
SINCLAIR, DK
机构
[1] UNIV ILLINOIS, DEPT PHYS, URBANA, IL 61801 USA
[2] ARGONNE NATL LAB, DIV HIGH ENERGY PHYS, ARGONNE, IL 60439 USA
关键词
D O I
10.1103/PhysRevD.48.R2385
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using finite size scaling and histogram methods we obtain results from lattice simulations indicating the logarithmic triviality of scalar quantum electrodynamics, even if the bare gauge coupling is large. Simulations of the noncompact formulation of the lattice Abelian Higgs model with fixed length scalar fields on L4 lattices with L ranging from 6 through 20 indicate a line of second-order critical points. Lengthy runs for each L produce specific-heat peaks which grow logarithmically with L and whose critical coupling shift with L picking out a correlation length exponent of 0.50(2) consistent with mean-field theory.
引用
收藏
页码:R2385 / R2388
页数:4
相关论文
共 50 条
  • [1] PHASES AND TRIVIALITY OF SCALAR QUANTUM ELECTRODYNAMICS
    BAIG, M
    FORT, H
    KOGUT, JB
    KIM, S
    [J]. PHYSICAL REVIEW D, 1995, 51 (09): : 5216 - 5228
  • [2] ON THE STABILITY AND TRIVIALITY OF SCALAR QUANTUM ELECTRODYNAMICS
    ALLES, B
    TARRACH, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (11): : 2087 - 2097
  • [3] On the triviality of textbook quantum electrodynamics
    Kim, S
    Kogut, JB
    Lombardo, MP
    [J]. PHYSICS LETTERS B, 2001, 502 (1-4) : 345 - 349
  • [4] Triviality of Quantum Electrodynamics Revisited
    Djukanovic, D.
    Gegelia, J.
    Meissner, Ulf-G.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (03) : 263 - 265
  • [5] Triviality of Quantum Electrodynamics Revisited
    D.Djukanovic
    J.Gegelia
    Ulf-G.Mei?ner
    [J]. Communications in Theoretical Physics, 2018, 69 (03) : 263 - 265
  • [6] SCALAR FORMALISM FOR QUANTUM ELECTRODYNAMICS
    HOSTLER, LC
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (06) : 1348 - 1354
  • [7] THE DOUBLY LOGARITHMIC APPROXIMATION IN QUANTUM ELECTRODYNAMICS
    MILEKHIN, GA
    FRADKIN, ES
    [J]. SOVIET PHYSICS JETP-USSR, 1964, 18 (05): : 1323 - 1331
  • [8] DOUBLE LOGARITHMIC ASYMPTOTICS OF QUANTUM ELECTRODYNAMICS
    FROLOV, GV
    GORSHKOV, VG
    GRIBOV, VN
    LIPATOV, LN
    [J]. PHYSICS LETTERS, 1966, 22 (05): : 671 - &
  • [9] Bound States in the Quantum Scalar Electrodynamics
    G. V. Efimov
    [J]. Few-Body Systems, 2010, 47 : 137 - 155
  • [10] Entanglement entropy in scalar quantum electrodynamics
    Fedida, Samuel
    Mazumdar, Anupam
    Bose, Sougato
    Serafini, Alessio
    [J]. PHYSICAL REVIEW D, 2024, 109 (06)