Lagrangian-Eulerian approximation methods for balance laws and hyperbolic conservation laws

被引:6
|
作者
Abreu, Eduardo [1 ]
Perez, John [2 ]
Santo, Arthur [1 ]
机构
[1] Univ Estadual Campinas, Inst Math Stat & Sci Comp, Campinas, SP, Brazil
[2] ITM Inst Univ, Fac Ciencias Exactas & Aplicadas, Medellin, Colombia
来源
UIS INGENIERIAS | 2018年 / 17卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
Conservation laws; Lagrangian-Eulerian; finite volume;
D O I
10.18273/revuin.v17n1-2018018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new finite control volume in a Lagrangian-Eulerian framework is presented (see papers [1, 28]), in which a local space-time domain is studied, in order to design a locally conservative scheme. Such scheme accounts for the delicate nonlinear balance between the numerical approximations of the hyperbolic flux and the source term for balance law problems linked to the purely hyperbolic character of conservation laws. Furthermore, by combining the ideas of this new approach, we give a formal construction of a new algorithm for solving several nonlinear hyperbolic conservation laws in two space dimensions. Here, a set of pertinent numerical experiments for distinct models is presented to evidence that we are calculating the correct qualitatively good solutions.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 50 条
  • [1] Lagrangian-Eulerian Approach for Nonlocal Conservation Laws
    Abreu, E.
    De la Cruz, R.
    Juajibioy, J. C.
    Lambert, W.
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (02) : 1435 - 1481
  • [2] A Class of Positive Semi-discrete Lagrangian-Eulerian Schemes for Multidimensional Systems of Hyperbolic Conservation Laws
    Abreu, Eduardo
    Francois, Jean
    Lambert, Wanderson
    Perez, John
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [3] A fast, robust, and simple Lagrangian-Eulerian solver for balance laws and applications
    Abreu, Eduardo
    Perez, John
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (09) : 2310 - 2336
  • [4] An Arbitrary Lagrangian-Eulerian Discontinuous Galerkin Method for Conservation Laws: Entropy Stability
    Klingenberg, Christian
    Schneucke, Gero
    Xia, Yinhua
    [J]. THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 209 - 219
  • [5] ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS GALERKIN METHOD FOR CONSERVATION LAWS ON MOVING SIMPLEX MESHES
    Fu, Pei
    Schnucke, Gero
    Xia, Yinhua
    [J]. MATHEMATICS OF COMPUTATION, 2019, 88 (319) : 2221 - 2255
  • [6] ROES MATRICES FOR GENERAL HYPERBOLIC CONSERVATION-LAWS IN EULERIAN OR LAGRANGIAN FORM
    GALLICE, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (08): : 1069 - 1072
  • [7] ARBITRARY LAGRANGIAN-EULERIAN DISCONTINUOUS GALERKIN METHOD FOR CONSERVATION LAWS: ANALYSIS AND APPLICATION IN ONE DIMENSION
    Klingenberg, Christian
    Schnuecke, Gero
    Xia, Yinhua
    [J]. MATHEMATICS OF COMPUTATION, 2017, 86 (305) : 1203 - 1232
  • [8] Hyperbolic Conservation Laws, Integral Balance Laws and Regularity of Fluxes
    Ben-Artzi, Matania
    Li, Jiequan
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (04) : 2048 - 2063
  • [9] Hyperbolic balance laws with dissipative source relaxing to adiabatic conservation laws
    Constantine M. Dafermos
    [J]. Ricerche di Matematica, 2018, 67 : 755 - 764
  • [10] Vanishing viscosity approximation to hyperbolic conservation laws
    Shen, Wen
    Xu, Zhengfu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (07) : 1692 - 1711