ON MARKOVS INEQUALITY ON R FOR THE HERMITE WEIGHT

被引:2
|
作者
LI, X
MOHAPATRA, RN
RODRIGUEZ, RS
机构
[1] Department of Mathematics, University of Central Florida, Orlando
关键词
D O I
10.1006/jath.1993.1092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The best constant in Markov’s inequality on R for the Hermite weight is characterized in terms of the weighted Chebyshev polynomial. © 1993 Academic Press, Inc.
引用
收藏
页码:115 / 129
页数:15
相关论文
共 50 条
  • [1] AN ANALOGUE OF MARKOVS INEQUALITY
    HARRIK, IJ
    DOKLADY AKADEMII NAUK SSSR, 1956, 106 (02): : 203 - 206
  • [2] MARKOV TYPE POLYNOMIAL INEQUALITY FOR SOME GENERALIZED HERMITE WEIGHT
    Ftorek, Branislav
    Marcokova, Mariana
    REAL FUNCTIONS '10: MEASURES, TOPOLOGY, INTEGRATION, BERNSTEIN APPROXIMATION, 2011, 49 : 111 - +
  • [3] COMPARING 2 VERSIONS OF MARKOVS INEQUALITY ON COMPACT-SETS
    LITHNER, J
    JOURNAL OF APPROXIMATION THEORY, 1994, 77 (02) : 202 - 211
  • [4] The Hermite-Hadamard inequality for r-convex functions
    Zabandan, Gholamreza
    Bodaghi, Abasalt
    Kilicman, Adem
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [5] The Hermite-Hadamard inequality for r-convex functions
    Gholamreza Zabandan
    Abasalt Bodaghi
    Adem Kılıçman
    Journal of Inequalities and Applications, 2012
  • [6] POLYNOMIAL INEQUALITIES AND MARKOVS INEQUALITY IN WEIGHTED LP-SPACES
    GOETGHELUCK, P
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 33 (3-4): : 325 - 331
  • [7] Some generalized Hermite–Hadamard–Fejér inequality for convex functions
    Miguel Vivas-Cortez
    Péter Kórus
    Juan E. Nápoles Valdés
    Advances in Difference Equations, 2021
  • [8] Comment on ‘the hermite-hadamard inequality for R-convex functions’
    Wu, Zhi-Pan
    Lecture Notes in Electrical Engineering, 2016, 375 : 1245 - 1248
  • [9] A new inequality for the Hermite constants
    Bacher, Roland
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (03) : 363 - 386
  • [10] On the Operator Hermite–Hadamard Inequality
    Hamid Reza Moradi
    Mohammad Sababheh
    Shigeru Furuichi
    Complex Analysis and Operator Theory, 2021, 15