NONLINEAR INSTABILITY OF EQUILIBRIUM SOLUTION FOR THE GINZBURG-LANDAU EQUATION

被引:0
|
作者
Guo Boling [1 ]
Yuan Rong [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
关键词
Nonlinear instability; Ginzburg-Landau equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the nonlinear instability of plane wave solutions to a Ginzburg-Landau equation with derivatives. We show that, under some condition in coefficient of the equation, these waves are unstable.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 50 条
  • [1] Instability of the vortex solution in the complex Ginzburg-Landau equation
    Lin, TC
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (01) : 11 - 17
  • [2] INSTABILITY OF THE HOLE SOLUTION IN THE COMPLEX GINZBURG-LANDAU EQUATION
    SAKAGUCHI, H
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1991, 85 (03): : 417 - 421
  • [3] Analytical solution of the Ginzburg-Landau equation
    Wellot, Yanick Alain Servais
    Nkaya, Gires Dimitri
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1750 - 1759
  • [5] Approximations of the solution of a stochastic Ginzburg-Landau equation
    Breckner, Brigitte E.
    Lisei, Hannelore
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 307 - 319
  • [6] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [7] Modulation instability of solutions to the complex Ginzburg-Landau equation
    Aleksic, Branislav N.
    Aleksic, Najdan B.
    Skarka, Vladimir
    Belic, Milivoj R.
    [J]. PHYSICA SCRIPTA, 2014, T162
  • [8] Equilibrium states of a variational formulation for the Ginzburg-Landau equation
    Kulikov, A. N.
    Kulikov, D. A.
    [J]. VI INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2017, 937
  • [9] Instability of solutions to the Ginzburg-Landau equation on Sn and CPn
    Cheng, Da Rong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [10] Ginzburg-Landau amplitude equation for nonlinear nonlocal models
    Garlaschi, Stefano
    Gupta, Deepak
    Maritan, Amos
    Azaele, Sandro
    [J]. PHYSICAL REVIEW E, 2021, 103 (02)