FREE-RADICALS, OXIDATIVE STRESS AND ANTIOXIDANT VITAMINS

被引:0
|
作者
NORDMANN, R
机构
关键词
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Free radicals having oxidizing properties are produced in vivo. The monoelectronic reduction of dioxygen generates the superoxide radical (.O2-) which, according to the experimental conditions, behaves as a reducing or an oxidizing agent. Its dismutation catalyzed by superoxide dismutases (SODs) produces hydrogen peroxide. The latter reacting with .O2- in the presence of << redox-active >> iron produces highly aggressive prooxidant radicals, such as the hydroxyl radical (.OH). This production is prevented through intracellular enzymes (catalase and glutathione peroxidases) which destroy the hydrogen peroxide involved in the biosynthesis of .OH. An increase in SODs activity without parallel enhancement of the enzymes destroying H2O2 may lead to important cellular disturbances. Other enzymes acting with glutathione as substrate (especially glutathione S-transferases) contribute to the antioxidant defence. The same holds true for selenium and zinc which act mainly through their involvement in the structure of both antioxidant enzymes and nonenzymatic proteins. Another line of antioxidant defence is represented by substrates acting as chain-breaking antioxidants in destructive processes linked to prooxidant free radicals, such as lipid peroxidation. The main membranous antioxidant is alpha-tocopherol which is able to quench efficiently lipid peroxyl radicals. Its efficiency would be quickly exhausted if the tocopheryl radical formed during this reaction wouldn't be retransformed into alpha-tocopherol through the intervention of ascorbate and/or glutathione. Ubiquinol and dihydrolipoate also contribute to the membranous antioxidant defence, whereas carotenoids are mainly responsible for the prevention of the deleterious effects of singlet oxygen. An oxidative stress is apparent when the antioxidant defence is insufficient to cope with the prooxidant production. It may elicit many intracellular disturbances, affecting mainly lipids or proteins. The contributive role of such an oxidative stress has been considered in many pathological conditions. As an example, the mechanisms leading to such a stress in the liver and in some extra-hepatic tissues during alcohol intoxication are shortly described.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 50 条