How Good Are Query Optimizers, Really?

被引:16
|
作者
Leis, Viktor [1 ]
Gubichev, Andrey [1 ]
Mirchev, Atanas [1 ]
Boncz, Peter [2 ]
Kemper, Alfons [1 ]
Neumann, Thomas [1 ]
机构
[1] TUM, Munich, Germany
[2] CWI, Amsterdam, Netherlands
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2015年 / 9卷 / 03期
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding a good join order is crucial for query performance. In this paper, we introduce the Join Order Benchmark (JOB) and experimentally revisit the main components in the classic query optimizer architecture using a complex, real-world data set and realistic multi-join queries. We investigate the quality of industrial-strength cardinality estimators and find that all estimators routinely produce large errors. We further show that while estimates are essential for finding a good join order, query performance is unsatisfactory if the query engine relies too heavily on these estimates. Using another set of experiments that measure the impact of the cost model, we find that it has much less influence on query performance than the cardinality estimates. Finally, we investigate plan enumeration techniques comparing exhaustive dynamic programming with heuristic algorithms and find that exhaustive enumeration improves performance despite the sub-optimal cardinality estimates.
引用
收藏
页码:204 / 215
页数:12
相关论文
共 50 条
  • [1] Learned Query Optimizers
    Ding, Bolin
    Zhu, Rong
    Zhou, Jingren
    [J]. FOUNDATIONS AND TRENDS IN DATABASES, 2024, 13 (04):
  • [2] Think big, start small: a good initiative to design green query optimizers
    Simon Pierre Dembele
    Ladjel Bellatreche
    Carlos Ordonez
    Amine Roukh
    [J]. Cluster Computing, 2020, 23 : 2323 - 2345
  • [3] Think big, start small: a good initiative to design green query optimizers
    Dembele, Simon Pierre
    Bellatreche, Ladjel
    Ordonez, Carlos
    Roukh, Amine
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2020, 23 (03): : 2323 - 2345
  • [4] Parallelizing Extensible Query Optimizers
    Waas, Florian M.
    Hellerstein, Joseph M.
    [J]. ACM SIGMOD/PODS 2009 CONFERENCE, 2009, : 871 - 878
  • [5] A Variability Model for Query Optimizers
    Soffner, Michael
    Siegmund, Norbert
    Rosenmueller, Marko
    Siegmund, Janet
    Leich, Thomas
    Saake, Gunter
    [J]. DATABASES AND INFORMATION SYSTEMS VII, 2013, 249 : 15 - +
  • [6] IRAS - HOW GOOD ARE THEY REALLY
    VATAVUK, WM
    [J]. CHEMICAL ENGINEERING, 1983, 90 (16) : 87 - 89
  • [7] The Vertica Query Optimizer: The Case for Specialized Query Optimizers
    Tran, Nga
    Lamb, Andrew
    Shrinivas, Lakshmikant
    Bodagala, Sreenath
    Dave, Jaimin
    [J]. 2014 IEEE 30TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2014, : 1108 - 1119
  • [8] Automating statistics management for query optimizers
    Chaudhuri, S
    Narasayya, V
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2001, 13 (01) : 7 - 20
  • [9] Have query optimizers hit the wall?
    Richard T. Snodgrass
    Sabah Currim
    Young-Kyoon Suh
    [J]. The VLDB Journal, 2022, 31 : 181 - 200
  • [10] Learned Query Optimizers: Evaluation and Improvement
    Mikhaylov, Artem
    Mazyavkina, Nina S.
    Salnikov, Mikhail
    Trofimov, Ilya
    Qiang, Fu
    Burnaev, Evgeny
    [J]. IEEE ACCESS, 2022, 10 : 75205 - 75218